, Volume 355, Issue 1–3, pp 29–39 | Cite as

The importance of intraspecific competition in a Littorina littorea population in the Wadden Sea

  • Christiane Fenske


Two field experiments were carried out totest whether effects of intraspecific competition ina Littorina littorea population can be detectedin a short-term investigation. Different size classesof L. littorea showed no significant differencein preferences when offered four kinds of eitherpossible food or substrata (Fucus vesiculosus,Ulva lactuca, Carcinus maenas, brick).Large and medium winkles preferred Fucusvesiculosus, followed by Ulva lactuca. Deadshore crabs (Carcinus maenas) were the leastpreferred objects for all size classes. On the firstday of the experiment bricks were more attractive tosmall littorines than to larger ones. Considering allfour days, the same ranking occurred for all sizeclasses: Fucus vesiculosus > Ulvalactuca > brick > Carcinus maenas. The reactionofjuveniles to increased densities was examined using anin situ caging experiment on a mussel bed. Meshsize of the cages allowed adult densities to beincreased while juveniles could escape by passingthrough the meshes. However, there was no significantemigration of small winkles even from cages with 10 to20 times natural density of large individuals. Ofgreater importance was the original number of winklesat the site. The available resources on the musselbeds appear to be sufficient to maintain a highpopulation density. Intraspecific competition does notseem to play a major role in this L. littorea-population.

Littorina littorea foodpreferences reaction to increased density intraspecific competition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F. J., 1970. Competition, coexistance and evolution. In Hecht, M. K. & W. C. Steere (eds), Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. Amsterdam: 121–158.Google Scholar
  2. Bakker, K., 1959. Feeding habits and zonation in some intertidal snails. Arch. Néerl. Zool. 13: 230–257.Google Scholar
  3. Barker, K. M. & A. R. O. Chapman, 1990. Feeding preferences of periwinkles among four species of Fucus. Mar. Biol. 106: 113–118.Google Scholar
  4. Barkmann, J. J., 1956. On the distribution and ecology of Littorina obtusata(L.) and its subspecific units. Arch. Néerl. Zool. 11: 22–86.Google Scholar
  5. Barnes, R. S. K., 1986. Daily activity rhythms in the intertidal gastropod Hydrobia ulvae(Pennant). Estuar. coast. Shelf Sci. 22: 325–334.Google Scholar
  6. Branch, G. M. & M. L. Branch, 1981. Experimental analysis of intraspecific competition in an intertidal gastropod, Littorina unifasciata. Aust. J. mar. Freshwat. Res. 32: 573–589.Google Scholar
  7. Castenholz, R. W. 1961. The effect of grazing on marine littoral diatom populations. Ecology 42: 783–794.Google Scholar
  8. Colgan, N., 1910. Notes on the adaptability of certain littoral mollusca. Irish Nat. 19: 127–133.Google Scholar
  9. Creese, R. G. & A. J. Underwood, 1982. Analysis of inter-and intraspecific competition amongst limpets with different methods of feeding. Oecologia (Berlin) 53: 337–346.Google Scholar
  10. Dernedde, T., 1992. Untersuchungen zur Ernäahrung der Möwen im Königshafen auf Sylt. Master thesis, University of Kiel, Germany, 92 pp.Google Scholar
  11. Dethlefs, B., 1995. Reproduktion der Strandschnecke Littorina littorea (L.) im Wattenmeer bei Sylt. Master thesis, University of Hamburg, Germany, 68 pp.Google Scholar
  12. Dörjes, J., 1980. Auswirkungen des kalten Winters 1978/79 auf das marine Makrobenthos. Natur und Museum 110: 109–115.Google Scholar
  13. Fletcher, W. J. & R. G. Creese, 1985. Competitive interactions between co-occurring herbivorous gastropods. Mar. Biol. 86: 183–191.Google Scholar
  14. Fraenkel, G., 1960. Lethal high temperatures for three marine invertebrates: Limulus polyphemus, Littorina littoreaand Pagurus longicarpus. Oikos 11: 171–182.Google Scholar
  15. Frid, C. L. J. & R. James, 1988. Interactions between two species of saltmarsh gastropods, Hydrobia ulvaeand Littorina littorea. Mar. Ecol. Prog. Ser. 43: 173–179.Google Scholar
  16. Geller, J. B., 1991. Gastropod grazers and algal colonization on a rocky shore in northern California: The importance of the body size of grazers. J. exp. mar. Biol. Ecol. 150: 1–17.Google Scholar
  17. Gowanloch, J. N. & F. R. Hayes, 1926. The physical factors, behaviour and intertidal life of Littorina. Contr. Canad. Biol. Fish. 3: 134–165.Google Scholar
  18. Guyomarc‘hCousin, C., 1975. Etude de la croissance d’un gastéropode prosobranche gonochorique: Littorina littoreaL. Cah. Biol. Mar. 16: 483–494.Google Scholar
  19. Hayes, F. R., 1929. Development, growth and behaviour of Littorina. Contr. Canad. Biol. Fish. 4: 415–430.Google Scholar
  20. Hertzler, I., 1995. Nahrungsökologische Bedeutung von Miesmuschelbäanken für Vögel (Laro-Limikolen) im Nordfriesischen Wattenmeer. Master thesis, University of Göttingen, Germany, 119 pp.Google Scholar
  21. Hutchinson, G. E., 1959. Hommage to Santa Rosalia, or why are there so many kinds of animals. Am. Nat. 93: 145–149.Google Scholar
  22. Hylleberg, J. & J. Tang Christensen, 1978. Factors affecting the intra-specific competition and size distribution of the periwinkle Littorina littorea(L.). Natura jütl. 20: 193–202.Google Scholar
  23. Ibing, J. & H. Theede, 1975. Zur Gefrierresistenz litoraler Mollusken von der deutschen Nordseeküste. Kieler Meeresforschungen 31: 44–48.Google Scholar
  24. Imrie, D.W., S. J. Hawkins & C. R. McCrohan, 1989. The olfactory-gustatory basis of food preference in the herbivorous prosobranch, dLittorina littorea(Linnaeus). J. Moll. Stud. 55: 217–225.Google Scholar
  25. Janke, K., 1990. Biological interactions and their role in community structure in the rocky intertidal of Helgoland (German Bight, North Sea). Helgoländer Meeresunters. 44: 219–263.Google Scholar
  26. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–29.Google Scholar
  27. Mayes, P. A., 1962. Comparative investigations of the euryhaline character of Littorinaand the possible relationship to intertidal zonation. Nature 195: 1269–1270.Google Scholar
  28. McQuaid, C. D., 1996. Biology of the gastropod family Littorinidae. II Role in the ecology of intertidal and shallow marine ecosystems. Oceanography and Marine Biology: an Annual Review 34: 263–302.Google Scholar
  29. Menge, B. A., 1976. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol. Monogr. 46: 35–93.Google Scholar
  30. Menge, B. A. & J. P. Sutherland, 1976. Species diversity gradients: synthesis of the roles of predation, competition and temporal heterogeneity. Am. Nat. 110: 351–369.Google Scholar
  31. Moore, H. B., 1937. The biology of Littorina littorea. Part I. Growth of the shell and tissues, spawning, length of life and mortality. J. mar. biol. Ass. U.K. 21: 721–742.Google Scholar
  32. Murphy, D. J. & L. C. Johnson, 1980. Physical and temporal factors influencing the freezing tolerance of the marine snail Littorina littorea(L.). Biol. Bull. 158: 220–232.Google Scholar
  33. Norton, T. A., S. J. Hawkins, N. L. Manley, G. A. Williams & D. C. Watson, 1990. Scraping a living: a review of littorinid grazing. Hydrobiologia 193: 117–138.Google Scholar
  34. Pardo, L. P., 1984. Dichteabhängige Wanderungen in einer Population von Arenicola marina(L.) im Gezeitenbereich der Nordsee. Master thesis, University of Bochum, Germany, 57 pp.Google Scholar
  35. Peterson, C. H., 1982. The importance of intra-and interspecific competition in the population biology of two infaunal suspension-feeding bivalves, Protothaca stamineaand Chione undellata. Ecol. Monogr. 52: 437–475.Google Scholar
  36. Petraitis, P. S., 1983. Grazing patterns of the periwinkle and their effect on sessile intertidal organisms. Ecology 64: 522–533.Google Scholar
  37. Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. Helgoländer wiss. Meeresunters. 30: 263–271.Google Scholar
  38. Reise, K., 1978. Experiments on epibenthic predation in theWadden Sea. Helgoländer wiss. Meeresunters. 31: 55–101.Google Scholar
  39. Reise, K., 1985. Tidal Flat Ecology. Springer, Berlin, 191 pp.Google Scholar
  40. Reise, K. & C. Gätje 1994. Königshafen: The natural history of an intertidal bay in the Wadden Sea–An introduction. Helgoländer Meeresunters. 48: 141–143.Google Scholar
  41. Reise, K., E. Herre & M. Sturm, 1994. Biomass and abundance of macrofauna in intertidal sediments of Königshafen in the northern Wadden Sea. Helgoländer Meeresunters 48: 201–215.Google Scholar
  42. Schäfer, W., 1950. Über Nahrung und Wanderung im Biotop bei der Strandschnecke Littorina littorea. Arch. Moll. 79: 1–8.Google Scholar
  43. Scherer, B. & K. Reise, 1981. Significant predation on micro-and macrobenthos by the crab Carcinus maenas, L. in the Wadden Sea. Kieler Meeresforsch., Sonderh. 5: 490–500.Google Scholar
  44. Sherell, R. M., 1981. Intraspecific competition in the periwinkle, Littorina littorea. Biol. Bull. 161: 131.Google Scholar
  45. Smith, J. E. & G. E. Newell, 1955. The dynamics of the zonation of the common periwinkle (Littorina littorea(L.)) on a stony beach. J. anim. Ecol. 24: 35–56.Google Scholar
  46. Stiven, A. E. & E. J. Kuenzler, 1979. The response of two salt-marsh molluscs, Littorina irrorataand Geukensia demissa, to field manipulations of density and Spartinalitter. Ecol. Monogr. 49: 151–171.Google Scholar
  47. Underwood, A. J., 1978. An experimental evaluation of competition between three species of intertidal prosobranch gastropods. Oecologia (Berlin) 33: 185–202.Google Scholar
  48. Watson, D. C. & T. A. Norton, 1985. Dietary preferences of the common periwinkle Littorina littorea(L.). J. exp. mar. Biol. Ecol. 88: 193–211.Google Scholar
  49. Welden, C. W. & W. L. Slauson, 1986. The intensity of competition versus its importance: an overlooked distinction and some implications. The Quarterly Review of Biology 61: 23–44.Google Scholar
  50. Werding, B., 1969. Morphologie, Entwicklung und Ökologie digener Trematoden-Larven der Strandschnecke Littorina littorea. Mar. Biol. 3: 306–333.Google Scholar
  51. Wilhelmsen, U. & K. Reise, 1994. Grazing on green algae by the periwinkle Littorina littoreain the Wadden Sea. Helgoländer Meeresunters. 48: 233–242.Google Scholar
  52. Williams, E. E., 1964. The growth and distribution af Littorina littorea(L.) on a rocky shore in Wales. J. anim. Ecol. 33: 413–432.Google Scholar
  53. Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgoländer wiss. Meeresunters 1: 1–92.Google Scholar
  54. Ziegelmeier, E., 1964. Einwirkungen des kaltenWinters 1962/63 auf das Makrobenthos im Ostteil der Deutschen Bucht. Helgoländer wiss. Meeresunters 10: 267–282.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Christiane Fenske
    • 1
  1. 1.Zoological InstituteErnst-Moritz-Arndt-UniversityGreifswaldGermany

Personalised recommendations