, Volume 355, Issue 1–3, pp 61–70 | Cite as

Parasites on an intertidal Corophium-bed: factors determining the phenology of microphallid trematodes in the intermediate host populations of the mud-snail Hydrobia ulvae and the amphipod Corophium volutator

  • Kim N. Mouritsen
  • Tomas Jensen
  • K. Thomas Jensen


The phenology of microphallid trematodes within their intermediate hostpopulations has been studied on an intertidal mud flat. The parasites usethe mud snail Hydrobia ulvae and the infaunal amphipod Corophium volutatoras first and secondary intermediate host, respectively. Migratory shorebirdsact as final hosts. Our results show a general trend of decline in thedensity of infected intermediate hosts during both spring and autumn, whichcould mainly be ascribed to shorebird predation. During summer the densityof both infected snails and infected amphipods increased considerably, witha culmination in June within the snail population (1000 infectedm-2 and in August within the amphipod population (40 000infected m-2. This time lag in parasite occurrence could berelated to (1) the development time of larval trematodes within the snails,(2) higher ambient temperatures in late summer increasing parasitetransmission between snails and amphipods during this period, and (3) ageneral increase in the Corophium population during late summer. Fromsamples collected between 1990 and 1995 it is shown that microphallidtrematodes occasionally may give rise to mass mortality in the amphipodpopulation. The prerequisites for such an event are a high parasiteprevalence within the first intermediate host population and unusually highambient temperatures, facilitating parasite transmission to the secondaryintermediate host, C. volutator.

Corophium Hydrobia intertidal mud flats microphallid trematodes phenology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrose, W. G. J., 1991. Are infaunal predators important in structuring marine soft-bottom communities. Am. Zool. 31: 849–860.Google Scholar
  2. Anderson, R. M., 1991. Populations and infectious diseases: ecology or epidemiology? J. anim. Ecol. 60: 1–50.Google Scholar
  3. Barnes, R. S. K. & R. N. Hughes, 1988. An introduction to marine ecology. Black. Sci. Publ., Oxford, 351 pp.Google Scholar
  4. Bick, A., 1994. Corophium volutator(Corophiidae: Amphipoda) as an intermediate host of larval digenea–an ecological analysis in a coastal region of the southern Baltic. Ophelia 40: 27–36.Google Scholar
  5. Deblock, S., 1980. Inventaire des trematodes larvaires parasites des mollusques Hydrobia(Prosobranches) des côtes de France. Parasitologia 22: 1–105.Google Scholar
  6. Dobson, A. P., 1988. The population biology of parasite-induced changes in host behaviour. Quat. Rev. Biol. 63: 139–165.Google Scholar
  7. Dobson, A. P. & P. J. Hudson, 1986. Parasites, disease and the structure of ecological communities. TREE 1: 11–15.Google Scholar
  8. Ginetsinskaya, T. A., 1988. Trematodes, their Life Cycles, Biology and Evolution. Dr Indira Kohli (translator), Amerind Publishing Co. Pvt. Ltd., New Delhi, 559 pp.Google Scholar
  9. Holt, R. D., 1993. Infectious diseases of wildlife, in theory and in practice. TREE 8: 423–425.Google Scholar
  10. Huxham, M., D. Raffaelli & A. Pike, 1993. The influence of Cryptocotyle lingua(Digenea: Platyhelminthes) infections on the survival and fecundity of Littorina littorea(Gastropoda: Prosobranchia); an ecological approach. J. exp. mar. Biol. Ecol. 168: 223–238.Google Scholar
  11. Jensen, T., 1996. The influence of microphallid trematodes on their host organisms Corophium volutatorand Corophium arenarium. Ms. thesis, University of Aarhus, Denmark.Google Scholar
  12. Jensen, K. T., G. Latama & K. N. Mouritsen, 1996. The effect of larval trematodes on the survival rates of two species ofmud snails (Hydrobiidae) experimentally exposed to desiccation, freezing and anoxia. Helgol. Meeresunters. 50: 327–335.Google Scholar
  13. Jensen, K. T. & K. N. Mouritsen, 1992. Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvaeand Corophium volutator–the possible role of trematodes. Helgol.Meeresunters. 46: 329–339.Google Scholar
  14. Kinne, O., 1980. Diseases of marine animals: General aspects. In Kinne, O. (ed.), Diseases of Marine Animals. Vol. 1. Wiley, New York: 13–73.Google Scholar
  15. Lauckner, G., 1987. Effects of parasites on juvenile Wadden Sea invertebrates. In Tougaard, S. & S. Asbirk (eds), Proceedings of the 5th International Wadden Sea Symposium. The National Forest and Nature Agency and the Museum of Fisheries and Shipping, Esbjerg, Denmark: 103–121.Google Scholar
  16. Laursen, K. & J. Frikke, 1984. The Danish Wadden Sea. Cambridge University Press, Cambridge: 214–223.Google Scholar
  17. Minchella, D. J. & M. E. Scott, 1991. Parasitism: A cryptic determinant of animal community structure. TREE 6: 250–253.Google Scholar
  18. Mouritsen, K. N., 1994. Day and night feeding in Dunlins Calidris alpina: choice of habitat, foraging technique and prey. J. Avian Biol. 25: 55–62.Google Scholar
  19. Mouritsen, K. N. & K. T. Jensen, 1994. The enigma of gigantism: effect of larval trematodes on growth, fecundity, egestion and locomotion in Hydrobia ulvae(Pennant) (Gastropoda: Prosobranchia). J. exp. mar. Biol. Ecol. 181: 53–66.Google Scholar
  20. Mouritsen, X. N. & K. T. Jensen, 1997. Parasite transmission between soft-bottom invertebrates: temperature mediated infection rates and mortality in Corophium volutator. Mar. Ecol. Prog. Ser. 151: 123–134.Google Scholar
  21. Muus, B., 1967. The fauna of Danish estuaries and lagoons. Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddr. Danm. Fisk. og Havunders., 316 pp.Google Scholar
  22. Möller, P. & R. Rosenberg, 1982. Production and abundance of the amphipod Corophium volutatoron the west coast of Sweden. Neth. J. Sea Res. 16: 127–140.Google Scholar
  23. Nybakken, J. W., 1993. Marine Biology. An Ecological Approach. Harper Collins College Publishers, New York, 462 pp.Google Scholar
  24. Olafsson, E. B. & L. E. Persson, 1986. The interaction between Nereis diversicolorO. F. Mueller and Corophium volutatorPallas as a structuring force in a shallow brackish sediment. J. exp. mar. Biol. Ecol. 103: 103–117.Google Scholar
  25. Peer, D. L., L. E. Linkletter & P. W. Hicklin, 1986. Life history and reproductive biology of Corophium volutator(Crustacea: Amphipoda) and the influence of shorebird predation on population structure in Chignecto Bay, Bay of Fundy, Canada. Neth. J. Sea Res. 20: 359–373.Google Scholar
  26. Posey, M. H., 1987. Influence of relative variabilities on the composition of benthic communities. Mar. Ecol. Prog. Ser. 39: 99–104.Google Scholar
  27. Reise, K., 1985. Tidal Flat Ecology. An Experimental Approach to Species Interactions. Springer-Verlag, Berlin, 191 pp.Google Scholar
  28. Segerstråle, S. G., 1960. Fluctuations in the abundance of benthic animals in the Baltic area. Soc. Scient. Fenn., Comment. Biol. 23: 1–19.Google Scholar
  29. Smit, C. J. & T. Piersma, 1989. Numbers, midwinter distribution, and migration of wader population using the east atlantic flyway. IWRB Special Publication No. 9, Canadian Wildlife Service, Ottawa: 24–63.Google Scholar
  30. Snedecor, G. & W. G. Cochran, 1989. Statistical Methods. Iowa State University Press, Ames, Iowa, 503 pp.Google Scholar
  31. Sousa, W. P., 1991. Can models of soft-sediment community structure be complete without parasites? Am. Zool. 31: 821–830.Google Scholar
  32. Sousa, W. P. & M. Gleason, 1989. Does parasitic infection compromise host survival under extreme environmental conditions? The case for Cerithidea californica(Gastropoda: Prosobranchia). Oecologia 80: 456–464.Google Scholar
  33. Tallmark, B. & G. Norrgren, 1976. The influence of parasitic trematodes on the ecology of Nassarius reticulatus(L.) in Gullmar Fjord (Sweden). Zoon 4: 149–154.Google Scholar
  34. Wilson, W. H., 1991. Competition and predation in marine soft-sediment communities. Ann. Rev. Ecol. Syst. 21: 221–241.Google Scholar
  35. Worrall, D. H., 1984. Diet of the dunlin Calidris alpinain the Severn Estuary. Bird Study 31: 203–212.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Kim N. Mouritsen
    • 1
  • Tomas Jensen
    • 1
  • K. Thomas Jensen
    • 1
  1. 1.Department of Marine Ecology, Institute of Biological SciencesUniversity of AarhusAarhus NDenmark

Personalised recommendations