Hydrobiologia

, Volume 353, Issue 1–3, pp 139–152 | Cite as

Contribution of nitrate to the uptake of nitrogen by phytoplankton in an ocean margin environment

Abstract

Rates of nitrate and ammonium uptake by phytoplankton were measured fromJuly 1990 to March 1995 in the surface waters at several stations locatedalong the continental margin of the NE Atlantic Ocean. Total inorganicnitrogen assimilation ranged from 2.3 to 95 nM h−1 andexhibited two maxima during the spring bloom and in fall at the beginning ofthe vertical mixing of the water column. Seasonal and spatial changes in thenitrogen uptake regime (f-ratios) were estimated (1) by correcting ammoniumuptake rates with an isotope dilution model, and (2) by evaluating theinhibition of nitrate uptake by ammonium, using a variation of theMichaelis-Menten equation. Overall, nitrate uptake rates paralleled carbonfixation rates, and f-ratios followed the well-known function of nitrate.During spring, new production, sensu Dugdale & Goering (1967), accountedfor 46 to 85% of the total inorganic nitrogen production. It can gainin importance through vertical mixing in fall (0.29 < f < 0.82), aftera period of predominant regenerated production in summer (0.07 < f <0.41). Although new production appeared to be quantitatively important onaverage (mean f = 0.53), kinetic data suggested that ammonium wasutilised preferentially throughout the full spectrum of nitrogenconcentrations observed during this study. Moreover, the inhibition ofnitrate uptake by ambient level of ammonium was estimated to range from 8 to50%. Therefore, it is suggested that the supply of regeneratednitrogenous nutrients, combined with feedback mechanisms (preference andinhibition), triggers a switch-over from predominantly new productiontowards regenerated production, even before the complete exhaustion ofnitrate in the surface water. Overall, these results indicate a leading rolefor ammonium in regulating the removal of nitrate in this margin ecosystem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antia, N. J., P. J. Harrison & L. Oliveira, 1991. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology, Phycological Reviews 11, Phycologia 30: 1–89.Google Scholar
  2. Blackburn, T. H., 1979. Method for measuring rates of NH4 turnover in anoxic marine sediments, using a 15N-NH4 dilution technique. Apply envir. Microbiol. 37: 760–765.Google Scholar
  3. Bronk, D. A., P. M. Glibert & B. B. Ward, 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265: 1843–1846.Google Scholar
  4. Collos, Y., 1987. Calculations of 15N uptake rates by phytoplankton assimilating one or several nitrogen sources. Appl. Rad. Isotopes 38: 275–282.Google Scholar
  5. Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Series 61: 183–201.Google Scholar
  6. Dugdale, R. C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.Google Scholar
  7. Dugdale, R. C. & F. P. Wilkerson, 1986. The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental considerations. Limnol. Oceanogr. 31: 673–689.Google Scholar
  8. Dugdale, R. C., F. P. Wilkerson & A. Morel, 1990. Realization of new production in coastal upwelling systems: A means to compare relative performance. Limnol. Oceanogr. 35: 822–829.Google Scholar
  9. Elskens, I. & M. Elskens, 1989. Handleiding voor de bepaling van nutrienten in zeewater met een Autoanalyser II systeem. Vrije Universiteit Brussel, 50 pp.Google Scholar
  10. Eppley, R. W., 1989. New production: history, methods, problems. In Berger, W. H., V. S. Smetacek & G. Wefer (eds), Productivity of the Ocean: Present and Past. J. Wiley & Sons, Chichester: 85–97.Google Scholar
  11. Eppley, R. W. & B. J. Peterson, 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.Google Scholar
  12. Eppley, R. W., E. H. Renger & W. G. Harrison, 1979. Nitrate and phytoplankton production in southern California coastal waters. Limnol. Oceanogr. 24: 483–494.Google Scholar
  13. Fiedler, R. & G. Proksch, 1975. The determination of nitrogen-15 by emission and mass spectrometry in biochemical analysis: a review. Anal. Chim. Acta 78: 1–62.Google Scholar
  14. Garside, C. & P. M. Glibert, 1984. Computer modelling of 15N uptake and remineralisation experiments. Limnol. Oceanogr. 29: 199–204.Google Scholar
  15. Glibert, P. M., F. Lipschultz, J. J. McCarthy & M. A. Altabet}, 1982. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27: 639–650.Google Scholar
  16. Harrison, W. G., L. R. Harris & B. D. Irwin, 1996. The kinetic of nitrogen utilization in the oceanic mixed layer: nitrate and ammonium interactions at nanomolar concentrations. Limnol. Oceanogr. 41: 16–32.Google Scholar
  17. Harrison, W. G., T. Platt & M. R. Lewis, 1987. f-ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plankton Res. 9: 235–248.Google Scholar
  18. Joint, I. & A. Rees, 1996. Phytoplankton production and nitrogen utilisation at the Celtic Sea Shelf break. Ocean Margin Exchange (OMEX), MAS2-CT93-0069. Final Annual Workshop, Brussels, 20–22 May 1996, pp. 18.Google Scholar
  19. Knauer, G. A., 1993. Productivity and new production of the oceanic system. In Wollast, R., F. T. Mackenzie & L. Chou (eds), Interactions of C, N, P and S. Biogeochemical Cycles and Global Change. Springer-Verlag, Berlin, NATO ASI Series I, 4: 211–231.Google Scholar
  20. Koroleff, F., 1969. Direct determination of ammonia in natural waters as indophenol blue. Int. Council Expl. Sea 9: 19–22.Google Scholar
  21. McCarthy, J. J., W. R. Taylor & J. L. Taft, 1977. Nitrogenous nutrition of the plankton in Chesapeake Bay. I. Nutrient availability and phytoplankton preferences. Limnol. Oceanogr. 22: 996–1010.Google Scholar
  22. Minas, H. J., M. Minas & T. T. Packard, 1986. Productivity in upwelling areas deduced from hydrographic and chemical fields. Limnol. Oceanogr. 31: 1182–1206.Google Scholar
  23. Parker, R. A., 1993. Dynamic models for ammonium inhibition of nitrate uptake by phytoplankton. Ecol. Modell. 66: 113–120.Google Scholar
  24. Platt, T. & W. G. Harrison, 1985. Biogenic fluxes of carbon and oxygen in the ocean. Nature 318: 55–58.Google Scholar
  25. Sathyendranath, S., T. Platt, E. P. W. Horne, W. G. Harrison, O. Ulloa, R. Outerbridge & N. Hoepffner, 1991. Estimation of new production in the ocean by compound remote sensing. Nature 353: 129–133.Google Scholar
  26. Savidge, G., P. Boyd, A. Pomroy, D. Harbour & I. Joint, 1995. Phytoplankton production and biomass estimates in the northeast Atlantic Ocean, May–June 1990. Deep-Sea Res. 42: 599–617.Google Scholar
  27. Sharp, J. H., M. J. Perry, E. H. Renger & R. W. Eppley, 1980. Phytoplankton rate processes in the oligotrophic waters of the Central North Pacific Ocean. J. Plankton Res. 2: 335–353.Google Scholar
  28. Smith, W. O. Jr. & W. G. Harrison, 1991. New production in polar regions: the role of environmental controls. Deep-Sea Res. 38: 1463–1479.Google Scholar
  29. Stolte, W. & R. Riegman, 1996. The relative preference index (RPI) for phytoplankton nitrogen use is only weakly related to physiological preference. J. Plankton Res. 18: 1041–1045.Google Scholar
  30. Toggweiler, J. R., 1989. Is the downward dissolved organic matter (DOM) flux important in the carbon transport. In Berger, W. H., V. S. Smetacek & G. Wefer (eds), Productivity of the Oceans: Present and Past. John Wiley, New York: 65–84.Google Scholar
  31. Vezina, A. F., 1994. Mesoscale variability in nitrogen uptake rates and the f-ratio during a coastal phytoplankton bloom. Limnol. Oceanogr. 39: 854–868.Google Scholar
  32. Wheeler, P. A. & S. A. Kokkinakis, 1990. Ammonium recycling limits nitrate use in the oceanic subartic Pacific. Limnol. Oceanogr. 35: 1267–1278.Google Scholar
  33. Wollast, R., 1993. Interactions of carbon and nitrogen cycles in the coastal zone. In Wollast, R., F. T. Mackenzie & L. Chou (eds), Interactions of C, N, P and S. Biogeochemical Cycles and Global Change. Springer-Verlag, Berlin, NATO ASI Series I, 4: 195–210.Google Scholar
  34. Wollast, R., L. Chou, M. Loijens, H. Paucot, N. Roevros & O. Dufour, 1996. Composition, origin and fate of particulate matter in the OMEX area. Ocean Margin Exchange (OMEX), MAS2-CT93-0069. Final AnnualWorkshop, Brussels, 20–22 May 1996, 27 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  1. 1.Laboratory of Analytical ChemistryVrije UniversiteitBrusselsBelgium
  2. 2.Laboratorium voor Analitische Chemie(ANCH)Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations