Advertisement

Hydrobiologia

, Volume 355, Issue 1–3, pp 127–138 | Cite as

Sensitivity to stress in the bivalve Macoma balthica from the most northern (Arctic) to the most southern (French) populations: low sensitivity in Arctic populations because of genetic adaptations?

  • Herman Hummel
  • Roelof Bogaards
  • Tatiana Bek
  • Lennard Polishchuk
  • Claude Amiard-Triquet
  • Guy Bachelet
  • Michel Desprez
  • Peter Strelkov
  • Alex Sukhotin
  • Andrei Naumov
  • Salve Dahle
  • Stanislav Denisenko
  • Michael Gantsevich
  • Kirill Sokolov
  • Lein de Wolf
Article

Abstract

The stress sensitivity, determined in copper exposureexperiments and in survival in air tests, and thegenetic structure, measured by means of isoenzymeelectrophoresis, were assessed in populations of theBaltic clam Macoma balthica (L.) from itssouthern to its northern distribution limit, in orderto test the hypotheses that near the distributionlimit the clams would be more stress sensitive andwould have a lower genetic variability. Thepopulations in west and north Europe show a stronggenetic resemblance. The populations in the sub-ArcticWhite Sea are genetically slightly different, and showa low stress sensitivity. The populations in theArctic Pechora Sea are genetically very distant fromthe other populations, and show the lowest stresssensitivity. Near the southern distribution limit, inagreement with the hypotheses, genetic variability islow and stress sensitivity high. On the other hand, incontrast to expectation, near the northerndistribution limit, in the populations of the PechoraSea, the genetic variability was higher, thus notreduced, and the stress sensitivity was low comparedto all other populations. Yet, it remains a questionif such is due to gradual physiologicalacclimatization (and ongoing differential selection)or to genetic adaptation.

Arctic adaptation copper distribution limit genetics geographic cline Macoma balthica stress sensitivity survival in air 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avise, J. C., 1974. Systematic value of electrophoretic data. Syst. Zool. 23: 465–481.Google Scholar
  2. Bachelet, G., 1980. Growth and recruitment of the tellinid bivalve Macoma balthicaat the southern limit of its geographical distribution, the Gironde estuary (SW France). Mar. Biol. 59: 105–117.Google Scholar
  3. Beaumont, A. R., 1982. Geographic variation in allele frequencies at three loci in Chlamys opercularisfrom Norway to the Brittany coast. J. mar. biol. Ass. U.K. 62: 243–261.Google Scholar
  4. Berger, E. M., 1983. Population genetics of marine gastropods and bivalves. In Russell-Hunter, W. D. (ed.), The Mollusca, Ecology. Academic Press, Orlando 6: 563–596.Google Scholar
  5. Beukema, J. J. & B. W. Meehan, 1985. Latitudinal variation in linear growth and other shell charateristics of Macoma balthica. Mar. Biol. 90: 27–33.Google Scholar
  6. Buroker, N. E., 1983. Population genetics of the American oyster Crassostrea virginicaalong the Atlantic coast and the Gulf of Mexico. Mar. Biol. 75: 99–112.Google Scholar
  7. Burton, R. S., 1983. Protein polymorphism and genetic differentiation ofmarine invertebrate populations (Review). Mar. Biol. Lett. 4: 193–206.Google Scholar
  8. Chapman, P. M., 1993. Are Arctic marine invertebrates relatively insensitive to metals. Envir. Toxicol. Chem. 12: 611–613.Google Scholar
  9. Conover, R. J., 1978. Transformation of organic matter. In Kinne, O. (ed.), Marine Ecology, Volume IV, Dynamics. John Wiley & Sons, Chichester: 221–499.Google Scholar
  10. Dillon, R. T. & J. J. Manzi, 1992. Population genetics of the hard clam, Mercenaria mercenaria, at the Northern limit of its range. Can. J. Fish. aquat. Sci. 49: 2574–2578.Google Scholar
  11. Endler, J. A., 1977. Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton, 246 pp.Google Scholar
  12. Gaffney, P. M., 1994. Heterosis and heterozygote deficiencies in marine bivalves: More light? In Beaumont, A. R. (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London: 146–153.Google Scholar
  13. Gilbert, M. A., 1973. Growth rate, longevity and maximum size of Macoma balthica(L.). Biol. Bull. 145: 119–126.Google Scholar
  14. Grant, W. S., A. C. Schneider, R. W. Leslie & M. I. Cherry, 1992. Population genetics of the brown mussel Perna pernain southern Africa. J. exp. mar. Biol. Ecol. 165: 45–58.Google Scholar
  15. Green, R. H., S. M. Singh, B. Hicks & J. McCuaig, 1983. An arctic intertidal population of Macoma balthica(Mollusca, Pelecypoda): genotypic and phenotypic components of population structure. Can J. Fish. aquat. Sci. 40: 1360–1371.Google Scholar
  16. Hilbish, T. J., 1985. Demographic and temporal structure of an allele frequency cline in the mussel Mytilus edulis. Mar. Biol. 86: 163–172.Google Scholar
  17. Hoffmann, R. J., 1985. Thermal adaptation and the properties of phosphoglucose isomerase allozymes from a sea anemone. In Gibbs, P. E. (ed.), Proceedings Nineteenth European Marine Biology Symposium. Cambridge University Press, Cambridge: 505–514.Google Scholar
  18. Hoffmann, A. A. & P. A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press, New York: 284 pp.Google Scholar
  19. Hummel, H., C. Amiard-Triquet, G. Bachelet, M. Desprez, J. Marchand, B. Sylvand, J. C. Amiard, H. Rybarczyk, R. H. Bogaards, J. Sinke, Y. de Wit & L. de Wolf, 1996a. Sensitivity to stress of the estuarine bivalve Macoma balthicafrom areas between the Netherlands and its southern limits (Gironde). J. Sea Res. 35: 315–321.Google Scholar
  20. Hummel, H., C. Amiard-Triquet, G. Bachelet, M. Desprez, J. Marchand, B. Sylvand, J. C. Amiard, H. Rybarczyk, R. H. Bogaards, J. Sinke, Y. de Wit & L. de Wolf, 1996b. Free amino acids as a biochemical indicator of stress in the estuarine bivalve Macoma balthica. Sci. Tot. Envir. 188: 233–241.Google Scholar
  21. Hummel, H., P. Bijok & R. H. Bogaards, 1996c. Effects of tidal zonation on size and genetic traits of Mytilus edulis(L.) and Macoma balthica(L.). Pol. Arch. Hydrobiol. 43: 431–445.Google Scholar
  22. Hummel, H., R. H. Bogaards, C. Amiard-Triquet, G. Bachelet, M. Desprez, J. Marchand, B. Sylvand, Y. de Wit & L. de Wolf, 1995. Uniform variation in genetic traits of a marine bivalve related to starvation, pollution and geographic clines. J. exp. mar. Biol. Ecol. 191: 133–150.Google Scholar
  23. Hummel, H., R. H. Bogaards, T. Bek, L. Polishchuk, K. Sokolov, C. Amiard-Triquet, G. Bachelet, M. Desprez, A. Naumov, P. Strelkov, S. Dahle, S. Denisenko, M. Gantsevich & L. de Wolf, 1997. Growth in the bivalve Macoma balthicafrom its northern to its southern distribution limit: A discontinuity in north-Europe because of genetic adaptations in Arctic populations? Comp. Physiol. Biochem. (submitted).Google Scholar
  24. Hummel, H., M. Wolowicz & R. H. Bogaards, 1994. Genetic variability and relationships for populations of Cerastoderma edule and of the C. glaucumcomplex. Neth. J. Sea Res. 33: 81–89.Google Scholar
  25. Koehn, R. K., B. L. Bayne, M. N. Moore & J. F. Siebenaller, 1980a. Salinity related physiological and genetic differences between populations of Mytilus edulis. Biol. J. Linn. Soc. 14: 319–334.Google Scholar
  26. Koehn, R. K., J. G. Hall, D. J. Innes & A. J. Zera, 1984. Genetic differentiation of Mytilus edulisin eastern North America. Mar. Biol. 79: 117–126.Google Scholar
  27. Koehn, R. K., R. Milkman & J. B. Mitton, 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 30: 2–32.Google Scholar
  28. Koehn, R. K., R. I. E. Newell & F. Immermann, 1980b. Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc. Natl. Acad. Sci. USA 77: 5385–5389.Google Scholar
  29. Koehn, R. K. & J. F. Siebenaller, 1981. Biochemical studies of aminopeptidase polymorphism in Mytilus edulis. II. Dependence of reaction rate on physical factors and enzyme concentration. Biochem. Gen. 19: 1143–1162.Google Scholar
  30. Levinton, J. S. & H. H. Lassen, 1978. Selection, ecology and evolutionary adjustment within bivalve mollusc populations. Phil. Trans. r. Soc. London, Ser. B, 284: 403–415.Google Scholar
  31. Li, C. C., 1955. Population Genetics. University of Chicago Press, Chicago, 366 pp.Google Scholar
  32. Meehan, B. W., 1985. Genetic comparison of Macoma balthica (Bivalvia, Tellinidae) from the eastern and western NorthAtlantic Ocean. Mar. Ecol. Prog. Ser. 22: 69–76.Google Scholar
  33. Menken, S. B. J., 1982. Biochemical genetics and systematics of small ermine moths (Lepidoptera, Yponomeutidae). Zeitschrift für Zoologischen Systematik und Evolutionsforschung 20: 131–143.Google Scholar
  34. Nei, M., 1975. Molecular Population Genetics and Evolution. North Holland Publ. Co., Amsterdam, 288 pp.Google Scholar
  35. Nei, M., 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. hum. Gen. 41: 225–233.Google Scholar
  36. Nilsson, J., 1985. Allozyme variation of Macoma balthica(L.) in the Bothnian Sea. Heredita 102: 277–280.Google Scholar
  37. Rose, R. L., 1984. Genetic variation in the oyster, Crassostrea virginica (Gmelin), in relation to environmental variation. Estuaries 7: 128–132.Google Scholar
  38. Saavedra, C., C. Zapata, A. Guerra & G. Alvarez, 1993. Allozyme variation in European populations of the oyster Ostrea edulis. Mar. Biol. 115: 85–95.Google Scholar
  39. Sarver, S. K., M. C. Landrum & D. W. Foltz, 1992. Genetics and taxonomy of ribbed mussels (Geukensiaspp.). Mar. Biol. 113: 385–390.Google Scholar
  40. Schreck, C. B., 1981. Stress and compensation in Teleostean fishes: Response to social and physical factors. In Pickering, A. D. (ed.), Stress and Fish. Academic Press, London: 295–321.Google Scholar
  41. Singh, S. M. & R. H. Green, 1984. Excess of allozyme homozygosity in marine molluscs and its possible biological significance. Malacologia 25: 569–581.Google Scholar
  42. Skibinski, D. O. F., J. A. Beardmore & T. F. Cross, 1983. Aspects of the population genetics of Mytilus(Mytilidae; Mollusca) in the British isles. Biol. J. Linn. Soc. 19: 137–183.Google Scholar
  43. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. Freeman & Co, New York, 887 pp.Google Scholar
  44. Strelkov, P. & H. Hummel, 1996. Survival in air for Arctic bivalves. In Hummel, H. (ed.), Biodiversity and Adaptation Strategies of Arctic Coastal Marine Benthos. Interim report INTAS project 94-391, NIOO-CEMO, Yerseke.Google Scholar
  45. Swofford, D. L. & R. B. Selander, 1981. Biosys-1: a Fortran program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Heredity 72: 281–283.Google Scholar
  46. Theisen, B. F., 1978. Allozyme clines and evidence of strong selection in three loci in Mytilus edulisL. (Bivalvia) from Danish waters. Ophelia 17: 135–142.Google Scholar
  47. Thorpe, J. P., 1983. Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. In Oxford, G. S. & D. Rollinson (eds), Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, London: 131–152.Google Scholar
  48. Treshnikov, A. F., 1985. Atlas of the Arctic. GYGK (SovietMinistry of Geodesy and Cartography), Moscow, 204 pp.Google Scholar
  49. Väinölä, R. & S.-L. Varvio, 1989. Biosystematics of Macoma balthica in northwestern Europe. In Ryland, J. S. & P. A. Tyler (eds), Reproduction, Genetics and Distributions of Marine Organisms. Olsen & Olsen, Fredensborg: 309–316.Google Scholar
  50. Workman, P. L. & J. D. Niswander, 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am. J. Hum. Gen. 22: 24–49.Google Scholar
  51. Wright, S., 1965. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution 19: 395–420.Google Scholar
  52. Zouros, E., 1987. On the relation between heterozygosity and heterosis: An evaluation of the evidence from marine mollusks. In Rattazi, M. C., J. G. Scabdalios & G. S. Whitt (eds), Isozymes: Current Topics in Biological and Medical Research, Genetics, Development, and Evolution. Liss Inc., New York 15: 255–270.Google Scholar
  53. Zouros, E. & A. L. Mallet, 1989. Genetic explanations of the growth/heterozygosity correlation inmarinemollusks. In Ryland, J. S. & P. A. Tyler (eds), Reproduction, Genetics and Distribution of Marine Organisms. Olsen & Olsen, Fredensborg: 317–324.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Herman Hummel
    • 1
  • Roelof Bogaards
    • 1
  • Tatiana Bek
    • 2
  • Lennard Polishchuk
    • 2
  • Claude Amiard-Triquet
    • 3
  • Guy Bachelet
    • 4
  • Michel Desprez
    • 5
  • Peter Strelkov
    • 6
  • Alex Sukhotin
    • 6
  • Andrei Naumov
    • 6
  • Salve Dahle
    • 7
  • Stanislav Denisenko
    • 8
  • Michael Gantsevich
    • 2
  • Kirill Sokolov
    • 2
  • Lein de Wolf
    • 1
  1. 1.Centre for Estuarine and Coastal EcologyNetherlands Institute of EcologyYersekeThe Netherlands
  2. 2.White Sea Biological Station PoyakondaMoscow State University, Biology facultyMoscowRussia
  3. 3.Faculté de Pharmacie, Laboratoire d'EcotoxicologieUniversité de NantesNantes CedexFrance
  4. 4.Laboratoire d'Océanographie biologiqueUniversité de Bordeaux IArcachonFrance
  5. 5.GEMEL Picardie, Station d'Etudes en Baie de Somme (SEBS)Saint Valéry sur SommeFrance
  6. 6.White sea biological station, Zoological instituteRussian academy of sciencesSt. PetersbergRussia
  7. 7.Akvaplan-nivaTromsoNorway
  8. 8.Murmansk Marine Biological InstituteMurmanskRussia

Personalised recommendations