Euphytica

, Volume 95, Issue 2, pp 187–194

Floral flavonoids and pH in Dendrobium orchid species and hybrids

  • Adelheid R. Kuehnle
  • David H. Lewis
  • Kenneth R. Markham
  • Kevin A. Mitchell
  • Kevin M. Davies
  • Brian R. Jordan
Article

Abstract

Anthocyanidins were identified in 28 Dendrobium species and hybrids selected for analysis based on colour and suitability in cut flower breeding. Flowers designated pink, red, maroon, orange, bronze, and brown in the trade were placed in RHS colour groups red-purple, purple-violet, violet on yellow, greyed-purple on yellow or yellow-orange, and brown. This colour range contained anthocyanins based on cyanidin, with peonidin occurring as a minor pigment. The colours of three blue genotypes, D. gouldii K280-6, D. biggibum ‘blue’, and D. Kultana ‘blue’, were light violet to purple by RHS standards and contained anthocyanins based on cyanidin. Peach-coloured flowers were classified as red or red-purple and included pelargonidin glycosides. Anthocyanin concentrations ranged from 0.13 to 0.18 μmoles/g FW in light lavender and peach, and up to 3.66 μmoles/g FW in brown. Combined cellular and vacuolar pH ranged narrowly from 4.67 to 5.09 among white, peach, lavender, and brown lines. Predominant copigments were flavonol glycosides based on kaempferol, quercetin, myricetin, and methylated derivatives. Flavonol aglycones and glycosylation sites differed little among two colour forms of D. gouldii and two D. Jaquelyn Thomas hybrids. Accumulation of quercetin, myricetin, and cyanidin indicated flavonoid 3' and 3',5' hydroxylation activities in several Dendrobium. Additional accumulation of isorhamnetin, syringetin, and peonidin indicated active flavonoid 3'- and 3',5'- O-methyltransferase enzymes.

Dendrobium colour breeding monocotyledon Orchidaceae pelargonidin pH flavonoid anthocyanins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arditti, J., 1992. Fundamentals of orchid biology, pp. 243–278. John Wiley & Sons, New York.Google Scholar
  2. Arditti, J. & M.H. Fisch, 1977. Anthocyanins of the Orchidaceae: Distribution, heredity, functions, synthesis and localization. In: J. Arditti (Ed.), Orchid Biology: Reviews and Perspectives, pp. 117–155. Cornell University Press, Ithaca.Google Scholar
  3. Chuck, G., T. Robbins, C. Nijjar, E. Ralston, N. Courtney-Gutterson & H.K. Dooner, 1993. Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378.PubMedCrossRefGoogle Scholar
  4. Courtney-Gutterson, N., 1993. Molecular breeding for color, flavor and fragrance. Sci Horticult 55: 141–160.CrossRefGoogle Scholar
  5. Courtney-Gutterson, N., 1994. The biologist's palette: genetic engineering of anthocyanin biosynthesis and flower color. In: B.E. Ellis, G.W. Kuroki & H. Stafford (Eds.), Genetic Engineering of Plant Secondary Metabolism, pp. 93–124. Plenum Press, New York.Google Scholar
  6. de Vlaming, P., A.W. Schram & H. Wiering, 1983. Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theor Appl Genet 66: 271–278.Google Scholar
  7. Forkmann, G., 1991. Flavonoids as flower pigments: The formation of the natural spectrum and its extension by genetic engineering. Plant Breeding 106: 1–26.CrossRefGoogle Scholar
  8. Heller, W. & G. Forkmann, 1993. Biosynthesis of flavonoids. In: J.B. Harborne (Ed.), The Flavonoids: Advances in Research since 1986, pp. 499–536. Chapman & Hall, London.Google Scholar
  9. Holton, T.A. & E.C. Cornish, 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.PubMedCrossRefGoogle Scholar
  10. Jackson, D., K. Roberts & C. Martin, 1992. Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinum majus. Plant J 2: 425–434.CrossRefGoogle Scholar
  11. Kamemoto, H., 1987. Four decades of research on orchid cytogenetics and breeding. Proc 12th World Orchid Conference, pp. 59–73. Tokyo, Japan.Google Scholar
  12. Kamemoto, H. & T.D. Amore, 1990. Inheritance of semi-alba and alba in Dendrobium. In: D.G. Bonham & J. Kernohan (Eds.), Proc 13th World Orchid Conference 1990, pp. 242–244. 13 WOC Proceedings Trust, Auckland.Google Scholar
  13. Kuehnle, A.R., 1996. Molecular biology of orchids. In: J. Arditti (Ed.), Orchid Biology: Reviews and Perspectives, VII. Kluwer Academic Publishers, Dordrecht (in press).Google Scholar
  14. Lenz, L.W. & D.E. Wimber, 1959. Hybridization and inheritance in orchids. In: C.L. Withner (Ed.), The Orchids: A Scientific Survey, pp. 261–314. Ronald Press, New York.Google Scholar
  15. Lowry, J.B. & S.C. Keong, 1973. A preliminary study of Malaysian orchid pigments. Malaysian J Sci 2(B): 115–121.Google Scholar
  16. Mabry, T.J., K.R. Markham & M.B. Thomas, 1970. The systematic identification of flavonoids. Springer Verlag, New York.Google Scholar
  17. Markham, K.R., 1982. Techniques of flavonoid identification. Academic Press, London.Google Scholar
  18. Markham, K.R. & K.R.W. Hammett, 1994. The basis of yellow colouration in Lathyrus aphaca flowers. Phytochemistry 37: 163–165.CrossRefGoogle Scholar
  19. Martin, C. & T. Gerats, 1993. Control of flower colouration. In: B.R. Jordan (Ed.), The Molecular Biology of Flowering, pp. 219–255. CAB International, UK.Google Scholar
  20. Nan, G.L. & A.R. Kuehnle, 1995. Genetic transformation in Dendrobium (Orchid). In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 34, Plant Protoplasts and Genetic Engineering VI, pp. 149–160. Springer Verlag, New York.Google Scholar
  21. Schwinn, K.E., K.R. Markham & N.K. Given, 1994. Floral flavonoids and the potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars. Phytochemistry 35: 145–150.CrossRefGoogle Scholar
  22. Schelpe, S. & J. Stewart, 1990. Dendrobiums, an introduction to the species in cultivation. Orchid Sundries, Stour Provost, Dorset.Google Scholar
  23. Siegelman, H.W. & S.B. Hendricks, 1958. Photocontrol of alcohol, aldehyde, and anthocyanin production in apple skin. Plant Physiol 33: 409–413.PubMedCrossRefGoogle Scholar
  24. Thammasiri, K., C.S. Tang, H.Y. Yamamoto & H. Kamemoto, 1986. Carotenoids and chlorophylls in yellow-flowered Dendrobium species. Lindleyana 1: 215–218.Google Scholar
  25. Wiering, H. & P. de Vlaming, 1984. Genetics of pollen and flower color. In: K.C. Sink (Ed.), Monographs on Theoretical and Applied Genetics 9: Petunia, pp. 49–67. Springer Verlag, Berlin.Google Scholar
  26. Yong, H.H. & N.H. Chua, 1990. Isolation and characterisation of genes involved in the pigment biosynthesis of orchids. In: D.G. Bonham & J. Kernohan (Eds.), Proceedings of the 13th World Orchid Conference 1990, p. 265. 13th WOC Proceedings Trust, Auckland.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Adelheid R. Kuehnle
    • 1
  • David H. Lewis
    • 1
  • Kenneth R. Markham
    • 3
  • Kevin A. Mitchell
    • 3
  • Kevin M. Davies
    • 1
  • Brian R. Jordan
    • 1
  1. 1.New Zealand Institute for Crop & Food Research LimitedLevin Research CentreLevinNew Zealand
  2. 2.Department of HorticultureUniversity of HawaiiHonoluluU.S.A
  3. 3.New Zealand Institute for Industrial Research & DevelopmentLower HuttNew Zealand

Personalised recommendations