General Relativity and Gravitation

, Volume 33, Issue 2, pp 183–194 | Cite as

Probing Quantum Violations of the Equivalence Principle

  • G. Z. Adunas
  • E. Rodriguez-Milla
  • D. V. Ahluwalia


The joint realm of quantum mechanics and general-relativistic description of gravitation is becoming increasingly accessible to terrestrial experiments and observations. In this essay we study the emerging indications of the violation of equivalence principle (VEP). While the solar neutrino anomaly may find its natural explanation in a VEP, the statistically significant discrepancy observed in the gravitationally induced phases of neutron interferometry seems to be the first indication of a VEP. However, such a view would seem immediately challenged by the atomic interferometry results. The latter experiments see no indications of VEP, in apparent contradiction to the neutron interferometry results. Here we show that these, and related torsion pendulum experiments, probe different aspects of gravity; and that current experimental techniques, when coupled to the solar-neutrino data, may be able to explore quantum mechanically induced violations of the equivalence principle. We predict quantum violation of the equivalence principle (qVEP) for next generation of atomic interferometry experiments. The prediction entails comparing free fall of two different linear superpositions of Cesium atomic states.

Equivalence principle quantum mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colella, R., Overhauser, A. W., and Werner, S. A. (1975). Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472–1474.Google Scholar
  2. 2.
    Amelino-Camelia, G. (1999). Gravity-wave interferometers as quantum-ravity detectors. Nature 398, 216–218.Google Scholar
  3. 3.
    Ahluwalia, D. V. (1999). Quantum Gravity: Testing time for theories. Nature 398, 199–200.Google Scholar
  4. 4.
    Alfaro, J., Morales-Técotl, H. A., and Urrutia, L. (2000). Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 84, 2318–2321.Google Scholar
  5. 5.
    Fogli, G. L., Lisi, E., Marrone, A., and Scioscia, G. (1999). Phys. Rev. D. 60, 053006[1–9].Google Scholar
  6. 6.
    Lisi, E., Marrone, A., and Mantanino, D. (2000). Probing quantum gravity effects in atmospheric neutrino oscillations. Lanl archive preprint: hep-ph/0002053.Google Scholar
  7. 7.
    Baebler, S. et al. (1999). Phys. Rev. Lett. 83, 3585–3588.Google Scholar
  8. 8.
    Fischbach, E. and Krause, D. E. (1999). New limits on the coupling of light pseudoscalars from equivalence principle experiments. Phys. Rev. Lett. 82, 4753–4756 (1999).Google Scholar
  9. 9.
    Hambye, T., Mann, R. B., and Sarkar, U. (1998). Tests of special relativity and equivalence principle from K physics. Phys. Rev. D. 58, 025003[1–8].Google Scholar
  10. 10.
    Viola, L. and Onofrio, R. (1997). Testing equivalence principle through freely falling quantum objects. Phys. Rev. D 55, 455–462.Google Scholar
  11. 11.
    Smith, G. L. et al. (2000). Short-range tests of the equivalence principle. Phys. Rev. D 61, 022001.Google Scholar
  12. 12.
    Peters, A., Chung, K. Y., and Chu, S. (1999). Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–82.Google Scholar
  13. 13.
    Littrel, K. C., Allman, B. E., and Werner, S. A. (1997). Two-wavelength-difference measurement of gravitationally induced quantum interference phases. Phys. Rev. A 56, 1767–1780.Google Scholar
  14. 14.
    Ahluwalia, D. V. (1997). On a new non-geometric element in gravity. Gen. Rel. Grav. 29, 1491–1501.Google Scholar
  15. 15.
    Ahluwalia, D. V. and Burgard, C. (1996). Gravitationally induced neutrino-oscillation phases. Gen. Rel. Grav. 28, 1161–1170. Erratum 29, 681 (1997).Google Scholar
  16. 16.
    Ahluwalia, D. V. and Burgard, C. (1998). Interplay of gravitation and linear superposition of different mass eigenstates. Phys. Rev. D 57, 4724–4727.Google Scholar
  17. 17.
    Konno, K. and Kasai, M. (1998). General relativistic effects of gravity in quantum mechanics: a case of ultra-relativistic, spin 1/2 particles. Prog. Theor. Phys. 100, 1145–1157.Google Scholar
  18. 18.
    Grossman, Y. and Lipkin, H. J. (1997). Flavor oscillations from a spatially localized source: a simple general treatment. Phys. Rev. D 55, 2760–2767.Google Scholar
  19. 19.
    Camacho, A. (1999). Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle. Mod. Phys. Lett. A 14, 2245–2556.Google Scholar
  20. 20.
    Gasperini, M. (1988). Testing the principle of equivalence with neutrino oscillations. Phys. Rev. D 38, 2635–2637.Google Scholar
  21. 21.
    Gasperini, M. (1989). Experimental constraints on a minimal and nonminimal violation of the equivalence principle in oscillations of massive neutrinos. Phys. Rev. D 39, 3606–3611.Google Scholar
  22. 22.
    Gago, A. M., Nunokawa, H., and Zukanovich Funchal, R. (1999). preprint: hep-ph/9909250.Google Scholar
  23. 23.
    Mansour, S. W. and Kuo, T. K. (1999). Solar neutrinos and violations of equivalence principle. Phys. Rev. D 60, 097301.Google Scholar
  24. 24.
    Mureika, J. R. (1997). An investigation of equivalence principle violations using solar neutrino oscillations in a constant gravitational potential. Phys. Rev. D 56, 2408–2418.Google Scholar
  25. 25.
    Halprin, A., Leung, C. N., and Pantaleone, J. (1996). A possible violation of a equivalence principle by neutrinos. Phys. Rev. D 53, 5365–5376.Google Scholar
  26. 26.
    Steinberg, A. M., Kwait, P. G., and Chaio, R. Y. (1993). Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708–711.Google Scholar
  27. 27.
    Steinberg, A. M. et al. (1998). An atom optics experiment to investigate faster-than-light tunneling. Ann. Phys. (Leipzig) 7, 593–601.Google Scholar
  28. 28.
    Olum, K. D. (1998). Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567–3570.Google Scholar
  29. 29.
    Nimtz, G. (1998). Superluminal signal velocity. Ann. Phys. (Leipzig) 7, 618 (1998).Google Scholar
  30. 30.
    Aharonov, Y., Reznik, B., and Stern, A. (1998). Quantum limitations on superluminal propagation. Phys. Rev. Lett. 81, 2190–2193.Google Scholar
  31. 31.
    Polchinski, J., Susskind, L., and Toumbas, N. (1999). Negative energy, superluminosity, and holography. Phys. Rev. D. 60, 094006.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • G. Z. Adunas
    • 1
  • E. Rodriguez-Milla
    • 1
  • D. V. Ahluwalia
    • 2
  1. 1.ISGBGEscuela de Fisica de la UAZZacatecas, ZACMexico
  2. 2.ISGBGEscuela de Fisica de la UAZZacatecas, ZACMexico

Personalised recommendations