Antonie van Leeuwenhoek

, Volume 78, Issue 1, pp 87–97 | Cite as

RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts

  • M. Teresa Fernández-Espinar
  • Braulio Esteve-Zarzoso
  • Amparo Querol
  • Eladio Barrio


The PCR amplification and subsequent restriction analysis of the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene was applied to the identification of yeasts belonging to the genus Saccharomyces. This methodology has previously been used for the identification of some species of this genus, but in the present work, this application was extended to the identification of new accepted Saccharomyces species (S. kunashirensis, S. martiniae, S. rosinii, S. spencerorum, and S. transvaalensis), as well as to the differentiation of an interesting group of Saccharomyces cerevisiae strains, known as flor yeasts, which are responsible for ageing sherry wine. Among the species of the Saccharomyces sensu lato complex, the high diversity observed, either in the length of the amplified region (ranged between 700 and 875 bp) or in their restriction patterns allows the unequivocal identification of these species. With respect to the four sibling species of the Saccharomyces sensu stricto complex, only two of them, S. bayanus and S. pastorianus, cannot be differentiated according to their restriction patterns, which is in accordance with the hybrid origin (S. bayanus × S. cerevisiae) of S. pastorianus. The flor S. cerevisiae strains exhibited restriction patterns different from those typical of the species S. cerevisiae. These differences can easily be used to differentiate this interesting group of strains. We demonstrate that the specific patterns exhibited by flor yeasts are due to the presence of a 24-bp deletion located in the ITS1 region and that this could have originated as a consequence of a slipped-strand mispairing during replication or be due to an unequal crossing-over. A subsequent restriction analysis of this region from more than 150 flor strains indicated that this deletion is fixed in flor yeast populations.

flor yeasts identification ITS RFLP ribosomal DNA Saccharomyces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett, JA (1992) The taxonomy of the genus Saccharomyces Meyen ex Ress: a short review for non-taxonomists. Yeast 8: 1–23Google Scholar
  2. Barnett JA, Payne RW & Yarrow D (1990) Yeast: Characteristic and Identification, 2nd edn. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  3. Cai J, Roberts IN & Collins MD (1996) Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera and Kluyveromyces deduced by small subunit rRNA gene sequences. Int. J. Syst. Bacteriol. 46: 542–549Google Scholar
  4. Clemons KV, McCusker JH, Davis RW & Stevens DA (1994) Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J. Infect. Dis. 169: 859–867Google Scholar
  5. de Barros Lopes M, Soden A, Martens AL, Henschke PA & Langridge P (1998) Differentiation and species identification of yeasts using PCR. Int. J. Syst. Bacteriol. 48: 279–286Google Scholar
  6. Esteve-Zarzoso B, Belloch C, Uruburu F & Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 49: 329–337Google Scholar
  7. Felsenstein J (1993) PHYLIP: phylogeny inference package, v. 3.5c. University of Washington, Seattle, WashingtonGoogle Scholar
  8. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20: 406–416Google Scholar
  9. Goddard MR & Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc. Natl. Acad. Sci. USA 96: 13880–13885Google Scholar
  10. Guido CG & Carnacini A (1996) Volatile composition of Vernaccia de Oristano sherry-like wine as affected by biological ageing. J. Sci. Food Agric. 70: 44–50Google Scholar
  11. Guijo S, Mauricio JC, Salmon JM & Ortega JM (1997) Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and flor film ageing of dry sherrytype wines. Yeast 13: 101–117Google Scholar
  12. Guillamón JM, Sabaté J, Barrio E, Cano J & Querol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch. Microbiol. 169: 387–392Google Scholar
  13. Hopfer RL, Walden P, Setterquist S & Highsmith WE (1993) Detection and differentiation of fungi in clinical specimens using polymerase chain reaction (PCR) amplification and restriction enzyme analysis. J. Med. Vet. Mycol. 31: 65–75Google Scholar
  14. Huffman JL, Molina FI & Jong S-C (1992) Authentication of ATCC strains in the Saccharomyces cerevisiae complex by PCR fingerprinting. Exp. Mycol. 16: 316–319Google Scholar
  15. Ibeas JI, Lozano I, Perdigones F & Jimenez J (1997) Dynamics of flor yeast populations during the biological aging of sherry wines. Am. J. Enol. Vitic. 48: 75–79Google Scholar
  16. Ibeas JI & Jimenez J (1997) Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl. Environ. Microbiol. 63: 7–12Google Scholar
  17. James SA, Collins MD & Roberts IN (1996) Use of an rRNA internal transcribed spacer region to distinguish phylogenetically closely related species of the genera Zygosaccharomyces and Torulaspora. Int. J. Syst. Bacteriol. 46: 189–194Google Scholar
  18. James SA, Cai J, Roberts IN & Collins MD (1997) A phylogenetic analysis of the genus Saccharomyces based on 18S rRNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces martiniae sp. nov. Int. J. Syst. Bacteriol. 47: 453–460Google Scholar
  19. Kreger-van Rij NJW (1984) The yeasts: A taxonomic Study, 3rd ed. Elsevier Science Publisher B.V., Amsterdam, The NetherlandsGoogle Scholar
  20. Kurtzman CP (1992) rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Int. J. Syst. Bacteriol. 42: 1–6Google Scholar
  21. Kurtzman CP (1993) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Antonie van Leeuwenhoek 63: 165–174Google Scholar
  22. Kurtzman CP & Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371Google Scholar
  23. Li WH (1997) Molecular evolution, Sinauer Associates, Sunderland, MAGoogle Scholar
  24. Martínez P, Codón AC, Pérez L & Benítez T (1995) Physiological and molecular characterization of flor yeasts: polymorphism of flor yeast populations. Yeast 11: 1399–1411Google Scholar
  25. Martínez P, Rodríguez P & Benítez T (1997) Velum formation by flor yeasts isolated from sherry wine. Am. J. Enol. Vitic. 48: 55–62Google Scholar
  26. McCullough MJ, Clemons KV, McCusker JH & Stevens DA (1998) Intergenic transcribed spacer PCR ribotyping for differentiation of Saccharomyces species and interspecific hybrids. J. Clin. Microbiol. 36: 1035–1038Google Scholar
  27. McCusker JH, Clemons KV, Stevens DA & Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 °C and form pseudohyphae. Infect. Immun. 62: 5447–5455Google Scholar
  28. Messner R & Prillinger H (1995) Saccharomyces species assignment by long range ribotyping. Antonie van Leeuwenhoek 67: 363–370Google Scholar
  29. Molina FI, Inoue T & Jong S-C (1992) Restriction polymorphisms in the internal transcribed spacers and 5.8S rDNA of Saccharomyces. Curr. Microbiol. 25: 251–255Google Scholar
  30. Molina FI, Jong S-C & Huffman JL (1993) PCR amplification of the 3' external transcribed and intergenic spacer of the ribosomal DNA repeat unit in three species of Saccharomyces. FEMS Microbiol. Lett. 108: 259–264Google Scholar
  31. Molnár O, Messner R, Prillinger H, Stahl U & Slavikova E (1995a) Genotypic identification of Saccharomyces species using random amplified polymorphic DNA analysis. Syst. Appl.Microbiol. 18: 136–145Google Scholar
  32. Molnár O, Messner R, Prillinger H, Scheide K, Stahl U, Silberhumer H, Wunderer W (1995b) Genotypische identifizierung von Saccharomyces-arten aus der getränkeindustrie mit hilfe der zufallsprimer-abhängigen polymerase-kettenreaktion (RAPD-PCR). Mitt. Klosterneuburg 45: 113–122Google Scholar
  33. Montrocher R, Verner M-C, Briolay J, Gautier C & Marmeisse R (1998) Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences. Int. J. Syst. Bacteriol. 48: 295–303Google Scholar
  34. Naumov GI, Naumova ES & Gaillardin C (1993) Genetic and karyotypic identification of wine Saccharomyces bayanus yeasts isolated in France and Italy. Syst. Appl. Microbiol. 16: 274–279Google Scholar
  35. Oda Y, Yabuki M, Tonomura K & Fukunaga M (1999) Sequence analysis of 18S-28S rRNA spacer regions from Saccharomyces kunashirensis, S. martiniae, S. rosinii and S. transvaalensis. Curr. Microbiol. 38: 61–63Google Scholar
  36. Querol A, Barrio E, Huerta T & Ramón D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 58: 2948–2953Google Scholar
  37. Redecker D, Thierfelder H, Walker C & Werner D (1997) Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identification in different genera of the order Glomales. Appl. Environ. Microbiol. 63: 1756–1761Google Scholar
  38. Rosini G, Federici F, Vaughan AE & Martini A. (1982) Systematics of the species of the yeast genus Saccharomyces associated with the fermentation industry. Eur. J. Appl. Microbiol. Biotechnol. 15: 188–193Google Scholar
  39. Smole Mozina S, Dlauchy D, Deak T & Raspor P (1997) Identification of Saccharomyces sensu stricto and Torulaspora yeasts by PCR ribotyping. Lett. Appl. Microbiol. 24: 311–315Google Scholar
  40. Santa María J (1959) Oxidación de alcohol etílico a ácido acético por levaduras vívas. I. Saccharomyces aceti nov. spec. y Saccharomyces oxidans, nov. spec., nuevas especies aisladas de vino. An. Inst. Nac. Invest. Agron. 8: 713–735Google Scholar
  41. Santa María J (1970) Saccharomyces gaditensis y Saccharomyces cordubensis, dos nuevas especies de levaduras de ‘flor’. Bol. Inst. Nac. Invest. Agron. 62: 57–66Google Scholar
  42. Tamai, Y, Momma, T, Yoshimoto, H and Kaneko, Y (1998) Coexistence of two types of chromosome in the bottom fermenting yeast, S. pastorianus. Yeast 14: 923–933Google Scholar
  43. Thompson JD, Higgins DG & Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acid Res. 22: 4673–4680Google Scholar
  44. Valente P, Gouveia FC, de Lemos GA, Pimentel D, van Elsas JD, Mendoça-Hagler LC & Hagler AN (1996) PCR amplification for differentiation of Saccharomyces cultures. FEMS Microbiol. Lett. 137: 253–256Google Scholar
  45. van der Walt JP (1970) Saccharomyces Meyen emend. Reess. In: Lodder E (Ed.) The Yeast: A Taxonomic Study, 2nd edn. (pp 555–718). Elsevier, AmsterdamGoogle Scholar
  46. Vaughan-Martini A (1995) Saccharomyces barnettii and Saccharomyces spencerorum: two new species of Saccharomyces sensu lato (van der Walt). Antonie van Leeuwenhoek 68: 111–118Google Scholar
  47. Vaughan-Martini A & Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie van Leeuwenhoek 53: 77–84Google Scholar
  48. Vaughan-Martini A & Martini A (1989) A proposal for correct nomenclature of the domesticated species of the genus Saccharomyces. In: Cantarelli C & Lanzarini G (Eds) Biotechnology Applications in Beverage Production (pp 1–16). Elsevier Applied Science, BarkingGoogle Scholar
  49. Vaughan-Martini A & Martini A (1993) A taxonomic key for the genus Saccharomyces. Syst. Appl. Microbiol. 16: 113–119Google Scholar
  50. Vaughan-Martini A & Martini A (1998) Saccharomyces Meyen ex Reess. In: Kurtzman CP & Fell JW (Eds) The Yeasts: A Taxonomic Study, 4th edn. (pp 358–371) Elsevier, AmsterdamGoogle Scholar
  51. Vaughan-Martini A, Martini A & Cardinali G (1993) Electrophoretic karyotyping as a taxonomic tool in the genus Saccharomyces. Antonie van Leeuwenhoek 63: 145–156Google Scholar
  52. White TJ, Bruns T, Lee E & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ & White TJ (Eds) PCR Protocols: A Guide to Methods and Applications (pp 315–322). Academic Press, San DiegoGoogle Scholar
  53. Wyder MT & Puhan Z (1997) A rapid method for identification of yeasts from Kefyr at species level. Milchwissenschaft. 52: 327–330Google Scholar
  54. Yamagishi, H. and Ogata, T. (1999). Chromosomal structures of bottom fermenting yeasts. Syst. Appl. Microbiol. 22: 341–353Google Scholar
  55. Yeh L-CC & Lee JC (1991) Higher-order structure of the 5.8S rRNA sequence within the yeasts 355 precursor ribosomal RNA syntetized in vitro. J. Mol. Biol. 217: 649–659Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • M. Teresa Fernández-Espinar
    • 1
  • Braulio Esteve-Zarzoso
    • 1
    • 2
  • Amparo Querol
    • 1
  • Eladio Barrio
    • 3
  1. 1.Departamento de BiotecnologíaInstituto de Agroquímica y Tecnología de Alimentos (CSIC)ValènciaSpain
  2. 2.Colección Española de Cultivos TipoUniversitat de València, Edificio de Investigación, Dr. Moliner, 50ValènciaSpain
  3. 3.Unitat de Genètica Evolutiva, Institut "Cavanilles" de Biodiversitat i Biologia EvolutivaUniversitat de València, Edificio de Institutos, Campus de PaternaValènciaSpain

Personalised recommendations