Antonie van Leeuwenhoek

, Volume 78, Issue 1, pp 99–106 | Cite as

Occurrence of Salmonella spp in estuarine and coastal waters of Portugal

  • Lidia P. Catalao Dionisio
  • M. Joao
  • V. Soares Ferreiro
  • M. Leonor Fidalgo
  • M. Esther García Rosado
  • Juan J. Borrego


The presence of Salmonella and its relationship with indicator organisms of fecal pollution, such as total coliforms, fecal coliforms and fecal streptococci, was studied at two marine zones in Portugal. Seventeen different Salmonella serotypes were isolated and identified, S. virchow was the most frequently isolated (21.6%). In addition, a high percentage (35.1%) was recorded for some Salmonella serotypes of clinical significance, namely S. enteritidis, S. infantis, S. typhimurium and S. virchow. In any of the samples from the two zones Salmonella was not detected in the absence of any of the indicator organisms. However, the incidence of Salmonella as a function of indicator concentration intervals established by the EEC standards was 0, 10 and 19.3% at guide values of total coliforms, fecal coliforms and fecal streptococci, respectively in the Faro samples (south of Portugal). In contrast, Salmonella incidence rates of 37.5, 36.4 and 33.3% were recorded at the corresponding guide values the Caminha samples (north of Portugal). No significant correlations (p>0.005) were obtained between Salmonella and the indicators at the sampling stations; however, total coliforms and fecal streptococci were the indicators most closely related to Salmonella in Caminha and Faro samples, respectively. Survival experiments in Escherichia coli, Enterococcus faecalis and S. typhimurium, using diffusion chambers, were performed to verify whether the lack of correlation between indicators and Salmonella was due to different inactivation rates in seawater. The results indicate that survival percentages of the three microorganisms tested were similar after 48 h of exposure to seawater.

diffusion chambers fecal indicators recreational waters Salmonella serotypes Salmonella survival water pollution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso JL, Alonso MA, Usera MA & Echeita A (1992) The occurrence of Salmonella serotypes in marine recreational waters of Valencia, Spain. Microbiologia SEM 8: 44–48Google Scholar
  2. APHA, AWWA & WPCF (1995) Standard Methods for the Examination ofWater andWastewater, 19th Ed. American Public Health Association, Washington, D.C.Google Scholar
  3. Arvanitidou M, Stathopoulos GA, Constantinidis TC & Katsouyannopoulos V (1995) The occurrence of Salmonella, Campylobacter and Yersinia spp. in river and lake waters. Microbiol. Res. 150: 153–158Google Scholar
  4. Audicana A, Perales I & Borrego JJ (1995) Modification of kanamycin-esculin-azide agar to improve selectivity in the enumeration of fecal streptococci from water samples. Appl. Environ. Microbiol. 61: 4178–4183Google Scholar
  5. Baird-Parker AC (1990) Foodborne salmonellosis. Lancet 336: 1231–1235Google Scholar
  6. Bernardo FM (1991) Significado epidemiologico da incidencia de Salmonella em alguns alimentos de origen animal em Portugal. Ph.D. Thesis. University of Lisboa, LisboaGoogle Scholar
  7. Borrego JJ & Figueras MJ (1997) Microbiological quality of natural waters. Microbiologia SEM 13: 413–426Google Scholar
  8. Borrego JJ, Arrabal F, de Vicente A, Gomez LF & Romero P (1983) Study of microbial inactivation in the marine environment. J. Water Pollut. Control Fed. 55: 297–302Google Scholar
  9. Chandler DS & Craven JA (1981) A note on the persistence of Salmonella havana and fecal coliforms on a naturally contaminated piggery effluent disposal site. J. Appl. Bacteriol. 51: 45–51Google Scholar
  10. Clark RM, Geldreich EE, Fox KR, Rice EW, Johnson CH, Goodrich JA, Barnick JA & Abdesaken FA (1996) Tracking a Salmonella serotype typhimurium outbreak in Gideon, Missouri: role of contaminant propagation modelling. J. Water Sci. Res. Technol. 45: 171–183Google Scholar
  11. Cooper RC & Danielson RE (1997) Detection of bacterial pathogens in wastewater and sludge. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD & Walter MV (Eds) Manual of Environmental Microbiology (pp 222–230) American Society for Microbiology, Washington, D.C.Google Scholar
  12. Cornax R., Moriñigo MA, Romero P & Borrego JJ (1990) Survival of pathogenic microorganisms in seawater. Curr. Microbiol. 20: 293–298Google Scholar
  13. Dutka BJ (1973) Coliforms are an inadequate index of water quality. J. Environ. Health. 36: 39–46Google Scholar
  14. EEC (1976) Council Directive of 8 December 1975 concerning the quality of bathing water (76/160/EEC), BrusselsGoogle Scholar
  15. EEC (1994) Proposal for a Council Directive concerning the quality of bathing waters (94/C112/03), BrusselsGoogle Scholar
  16. Ferguson CM, Coote BG, Ashbolt NJ & Stevenson IM (1996) Relationships between indicators, pathogens and water quality in an estuarine system. Water Res. 30: 2045–2054Google Scholar
  17. Fernandez de la Hoz K, Carpintero JL, Puchades J, Verde C & Garcia C (1994) Investigación de los brotes de toxiinfección alimentaria en Mora (Toledo) con una fuente de infección comÚn. Rev. San. Hig. Publ. 68: 589–595Google Scholar
  18. Figueras MJ, Polo F, Inza I & Guarro J (1997) Past, present and future perspective of the EU bathing water directive. Marine Pollut. Bull. 34: 148–156Google Scholar
  19. Gales P & Baleux B (1992) Influence of the drainage basin imput on a pathogenic bacteria (Salmonella ) contamination of a Mediterranean lagoon (the Thau Lagoon - France) and the survival of this bacteria in brackish water. Water Sci. Technol. 25: 105–114Google Scholar
  20. Isern AM, Ferrer MD & Fernandez F (1987) Estudio de Salmonella en el agua de mar de las playas de la ciudad de Barcelona. Gac. Sanit. 1: 118–122Google Scholar
  21. Jackson GJ, Langford CF & Archer LA (1991) Control of salmonellosis and similar foodborne infections. Food Control 1: 26–34Google Scholar
  22. Kramer MH, Herwaldt BL, Craun GF, Calderon RL & Juranek DD (1996) Waterborne disease: 1993 and 1994. J. Am. Water Wkrs. Ass. 88: 66–80Google Scholar
  23. Lafarga MA, Castillo J, Navarro M & Gomez-Lus R (1991) Serotipos de Salmonella enterica en aguas residuales de Zaragoza. Comparación con aislamientos clínicos. 1982–1989. Microbiologia SEM 7: 23–36Google Scholar
  24. Le Minor L (1984) Salmonella. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 1 (pp 427–458) Williams & Wilkins, BaltimoreGoogle Scholar
  25. Lucena F, Finance C, Jofre J, Sancho J & Schwartzbrod L (1982) Viral pollution determination of superficial waters (river water and sea water) from the urban area of Barcelona. Water Res. 16: 173–177Google Scholar
  26. Moe CL (1997) Waterborne transmission of infectious agents. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD & Walter MV (Eds.) Manual of Environmental Microbiology (pp 136–152). American Society for Microbiology, Washington, D.C.Google Scholar
  27. Moriñigo MA, Borrego JJ & Romero P (1986) Comparative study of different methods for detection and enumeration of Salmonella spp. in natural waters. J. Appl. Bacteriol. 61: 169–176Google Scholar
  28. Moriñigo MA, Cornax R, Muñoz MA, Romero P & Borrego JJ (1989) Viability of Salmonella species in natural waters. Curr. Microbiol. 18: 267–273Google Scholar
  29. Moriñigo MA, Cornax R, Muñoz MA, Romero P & Borrego JJ (1990a) Relationship between Salmonella spp. and indicator microorganisms in polluted natural waters. Water Res. 24: 117–120Google Scholar
  30. Moriñigo MA, Cornax R, Castro D, Martinez-Manzanares E & Borrego JJ (1990b) Viability of Salmonella spp. and indicator microorganisms in seawater using membrane diffusion chambers. Antonie van Leeuwenhoek 57: 109–117Google Scholar
  31. Moriñigo MA, Muñoz MA, Cornax R, Martinez-Manzanares E & Borrego JJ (1992) Presence of indicators and Salmonella in natural waters affected by outfall wastewater discharges. Water Sci. Technol. 25: 1–8Google Scholar
  32. Moriñigo MA, Martinez-Manzanares E, Muñoz MA, Balebona MC & Borrego JJ (1993a) Reliability of several microorganisms to indicate the presence of Salmonella in natural waters. Water Sci. Technol. 27: 471–474Google Scholar
  33. Moriñigo MA, Muñoz MA, Martinez-Manzanares E, Sanchez JM & Borrego JJ (1993b) Laboratory study of several enrichment broths for the detection of Salmonella spp. particularly in relation to water samples. J. Appl. Bacteriol. 74: 330–335Google Scholar
  34. O'shanahan L, Monzon-Moreno C, Lopez-Orge RH & Gonzalez-Lama Z (1990) Salmonella y otras bacterias de aguas costeras de Gran Canaria. Bol. Inst. Esp. Oceanogr. 6: 59–70Google Scholar
  35. Polo F, Figueras MJ, Inza I, Sala J, Fleisher JM & Guarro J (1998) Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol. Lett. 160: 253–256Google Scholar
  36. Polo F, Figueras MJ, Inza I, Sala J, Fleisher JM & Guarro J (1999) Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. Antonie van Leeuwenhoek in pressGoogle Scholar
  37. Ruiz F, Nuñez ML, Sempere MA, Diaz J & Gomez J (1995) Systemic infections in three infants due to a lactose-fermenting strain of Salmonella virchow. Eur. J. Clin. Microbiol. 14: 454–456Google Scholar
  38. Tobias H & Heinemeyer EA (1994) Vorkommen von Salmonella in küstennahem Nordseewasser Jowie ihr hygienischer Bezug zu Indikatorbakterien und konta minationsquellen. Zbl. Bakt. Hyg. 195: 495–508Google Scholar
  39. Usera MA, Cano R & Echeita A (1995) Análisis de los serotipos de Salmonella sp. aislados en España en el período 1988–1992. Enf. Inf. Microbiol. Clin. 13: 138–145Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Lidia P. Catalao Dionisio
    • 1
  • M. Joao
    • 1
  • V. Soares Ferreiro
    • 2
  • M. Leonor Fidalgo
    • 2
  • M. Esther García Rosado
    • 3
  • Juan J. Borrego
    • 4
  1. 1.UCTA, University of AlgarveFaroPortugal
  2. 2.Department of Zoology and Anthropology, Faculty of SciencesUniversity of PortoPortoPortugal, and
  3. 3.Department of Microbiology, Faculty of Sciences, Campus Universitario TeatinosUniversity of MalagaMalagaSpain
  4. 4.Department of Microbiology, Faculty of Sciences, Campus Universitario TeatinosUniversity of MalagaMalagaSpain

Personalised recommendations