Documenta Ophthalmologica

, Volume 100, Issue 2–3, pp 115–137

Multifocal ERG and VEP responses and visual fields: comparing disease-related changes

  • Donald C. Hood
  • Xian Zhang


Static visual perimetry and the multifocal technique both measure the local effects of diseases of the retina and optic tract. The purpose here is to relate the measures obtained from each technique and to describe this relationship in some diseases. It is important to measure both the implicit time and amplitude of the multifocal ERG (mERG) or multifocal VEP (mVEP) responses. Some diseases affect one measure of the responses but not the other. The comparison of either measure to local sensitivity changes measured with static perimetry (e.g. the Humphrey 24-2 and 30-2) presents a problem. Different stimulus displays are employed. Further, the multifocal responses are displayed with arbitrary spacing between the responses. One approach is to measure the amplitude and implicit time of the multifocal responses and display these values on the same coordinates as in the visual field plots. This allows a qualitative comparison of fields and multifocal responses on the same scale. A second approach involves modifying the Humphrey perimeter software so that the test spots are placed in the centers of the multifocal stimuli (e.g. the center of each hexagon of the mERG display). A third approach involves estimating the thresholds for the regions of the multifocal display by interpolating from values at the standard Humphrey locations. The second and third approaches produce a one-to-one mapping of the multifocal and field measures and allow a quantitative comparison between the two. The relationship between visual fields and multifocal responses, determined through one or more of these approaches, is different depending upon whether the disease primarily affects the outer retina (retinitis pigmentosa), ganglion cell (glaucoma), or optic nerve (ischemic optic neuropathy and optic neuritis).

electroretinogram (ERG) glaucoma multifocal optic neuritis retinitis pigmentosa (RP) visual evoked visual evoked potential (VEP) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sutter EE. The fast m-transform: a fast computation of cross-correlations with binary m-sequences. Soc Ind Appl Math 1991; 20: 686–94.Google Scholar
  2. 2.
    Sutter EE, Tran D. The field topography of ERG components in man-I. The photopic luminance response. Vis Res 1992; 32: 433–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroenceph Clin Neurophysiol 1994; 90: 65–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Hood DC, Seiple W, Holopigian K, Greenstein V. A comparison of the components of the multi-focal and full-field ERGs. Vis Neurosci 1997; 314: 533–44.CrossRefGoogle Scholar
  5. 5.
    Hood DC, Holopigian K, Seiple W, Greenstein V, Li J, Sutter EE, Carr RE. Assessment of local retinal function in patients with retinitis pigmentosa using the multi-focal ERG technique. Vis Res 1998; 38: 163–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Hood DC, Li L. A technique for measuring individual multifocal ERG records. In: Yager D. ed. Non-invasive assessment of the visual system. Opt Soc Amer, Trends Opt Phot 1997; 11: 33–41.Google Scholar
  7. 7.
    Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebman JM, Odel JG, Ritch R. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthal Vis Sci 2000; 41: 1570–9.PubMedGoogle Scholar
  8. 8.
    Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebman JM, Ritch R. An interocular comparison of the multifocal VEP: A possible technique for detecting local damage to the optic nerve. Invest Ophthal Vis Sci 2000; 41: 1580–7.PubMedGoogle Scholar
  9. 9.
    Hood DC, Odel JG, Zhang X. Tracking the recovery of local optic nerve function after acute optic neuritis: a multifocal VEP study. Invest Ophthal Vis Sci. 2000; in press.Google Scholar
  10. 10.
    Epstein NE, Silverglide R, Zhang X, Karin N, Kangovi S, Hood DC. Variation in the location and angle of the calcarine sulcus referenced to cranial landmarks. ISCEV meeting, Feb. 2000.Google Scholar
  11. 11.
    Hood DC Assessing Retinal Function with the Multifocal Technique. Prog. Ret Eye Res 2000; 19: 607–46.CrossRefGoogle Scholar
  12. 12.
    Seeliger MW, Kretschmann UH, Apfelstedt-Sylla E, Zrenner E. Implicit time topography of multifocal electroretinograms. Invest Ophthal Vis Sci 1998; 39: 718–23.PubMedGoogle Scholar
  13. 13.
    Seeliger M, Kretschmann U, Apfelstedt-Sylla E, Ruther K, Zrenner E. Multifocal electroretinography in retinitis pigmentosa. Amer J Ophthal 1998; 125: 214–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Kretschmann U, Seeliger MW, Ruether K, Usui T, Apfelstedt-Sylla E, Zrenner E. Multifocal electroretinography in patients with Stargardt's macular dystrophy. Brit J Ophthal 1998; 82: 267–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Kretschmann U, Seeliger M, Ruether K, Usui T, Zrenner E. Spatial cone activity distribution in diseases of the posterior poledetermined by multifocal electroretinography. Vis Res 1998; 38: 3817–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Hood DC Birch DG. Abnormalities of the retinal cone system in retinitis pigmentosa. Vis Res 1996; 36: 1699–1709.PubMedCrossRefGoogle Scholar
  17. 17.
    Miyake Y, Shiroyama N, Horiguchi M, Ota I. Asymmetry of focal ERG in human macular region. Invest Ophthal Vis Sci. 1989; 30: 1743–9.PubMedGoogle Scholar
  18. 18.
    Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthal Vis Sci. 1998; 39: 937–50.PubMedGoogle Scholar
  19. 19.
    Zhang X, Hood DC, Greenstein VC, Odel JG, Kangovi S, Liebmann JM. Detecting field defects with multifocal VEPS: Two eyes are better than one. Invest Ophthal Vis Sci. 1999; 40: S81.Google Scholar
  20. 20.
    Graham SL, Klistorner AI, Grigg JR, Billson FA. Objective VEP perimetry in glaucoma: asymmetry analysis to identify early defects. J Glaucoma 2000; 9: 10–9.PubMedGoogle Scholar
  21. 21.
    Steinmetz H, Gunter F, Bernd-Ulrich M. Craniocerebral topography within the international 10-20 system. Electroenceph Clin Neurophysiol 1989; 72: 499–506.PubMedCrossRefGoogle Scholar
  22. 22.
    Brindley GS. The variability of the human striate cortex. Proc Physiol Soc. 1972; 1P–3P.Google Scholar
  23. 23.
    Stensaas SS, Eddington DK, DobelleWH. The topography and variability of the primary visual cortex in man. J Neurosurg 1974; 40: 747–755.PubMedCrossRefGoogle Scholar
  24. 24.
    Hood DC, Zhang X, Odel JG, Miele D, Greenstein VC. A comparison of multifocal visual evoked potentials to field defects due to optic nerve damage. ISCEV meeting, Feb. 2000.Google Scholar
  25. 25.
    Zhang X, Hood DC. Quantitative methods for comparing changes in multifocal visual evoked potentials to visual field defects. Invest Ophthal Vis Sci 2000; 41: S292. Abstract nr 1538.Google Scholar
  26. 26.
    Odel JG, Hood DC, Zhang X, Miele D, Karin N, Kangovi S, Behrens MM. The multifocal VEP is abnormal in regions of the field affected in optic neuritis. Invest Ophthal Vis Sci 2000; 41: S310. Abstract nr 1639.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Donald C. Hood
    • 1
  • Xian Zhang
    • 1
  1. 1.Department of PsychologyColumbia UniversityNew YorkUSA

Personalised recommendations