Advertisement

General Relativity and Gravitation

, Volume 33, Issue 2, pp 353–361 | Cite as

Quantum CTC's in General Relativity

  • Luis J. Garay
  • Pedro F. González-Díaz
Article

Abstract

We review different spacetimes that contain nonchronal regions separated from the causal regions by chronology horizons and investigate their connection with some important aspects one would expect to be present in a final theory of quantum gravity, including: stability to classical and quantum metric fluctuations, boundary conditions of the universe and gravitational topological defects corresponding to spacetime kinks.

Closed timelike curves (CTC) chronology protection wormholes warp drives gravitational kinks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gödel, K. (1949). Rev. Mod. Phys. 21, 447; reprinted in: Gen. Rel. Grav. 32, 1399 (2000).Google Scholar
  2. 2.
    Morris, M. S., Thorne, K. S., and Yurtsever, U. (1988). Phys. Rev. Lett. 61, 1446.Google Scholar
  3. 3.
    Gott, J. R. (1991). Phys. Rev. Lett. 66, 1126.Google Scholar
  4. 4.
    González-Díaz, P. F. (1996). Phys. Rev. D 54, 6122.Google Scholar
  5. 5.
    González-Díaz, P. F. and Garay, L. J. (1999). Phys. Rev. D 59, 064026.Google Scholar
  6. 6.
    Hawking, S. W. (1992). Phys. Rev. D 46, 603.Google Scholar
  7. 7.
    Visser, M. (1996). Lorentzian Wormholes (AIP, Woodbury, NY).Google Scholar
  8. 8.
    Kim, S.-W. and Thorne, K. S. (1991). Phys. Rev. D 43, 3929.Google Scholar
  9. 9.
    González-Díaz, P. F. (1998). Phys. Rev. D 58, 124011.Google Scholar
  10. 10.
    Krasnikov, S. V. (1996). Phys. Rev. D 54, 7322.Google Scholar
  11. 11.
    Ford, L. H. and Roman, T. A. (1999). Phys. Rev. D 60, 104018.Google Scholar
  12. 12.
    Vilenkin, A. (1982). Phys. Lett. B 117, 25.Google Scholar
  13. 13.
    Hartle, J. B. and Hawking, S. W. (1983). Phys. Rev. D 28, 2960.Google Scholar
  14. 14.
    Hawking, S. W. and Turok, N. (1998). Phys. Lett. B 425, 25.Google Scholar
  15. 15.
    Gott, J. R. and Li, Li-Xin. (1998). Phys. Rev. D 58, 023501.Google Scholar
  16. 16.
    González-Díaz, P. F. (1999). Phys. Rev. D 59, 123513.Google Scholar
  17. 17.
    Alcubierre, M. (1994). Class. Quant. Grav. 11, L73.Google Scholar
  18. 18.
    Hiscock, W. A. (1997). Class. Quant. Grav. 14, L183.Google Scholar
  19. 19.
    Finkelstein, D. and McCollum, G. (1975). J. Math. Phys. 16, 2250.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Luis J. Garay
    • 1
  • Pedro F. González-Díaz
    • 1
  1. 1.Instituto de Matemáticas y Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations