General Relativity and Gravitation

, Volume 33, Issue 2, pp 309–338 | Cite as

Differentially Rotating Disks of Dust: Arbitrary Rotation Law

  • Marcus Ansorg
Article

Abstract

In this paper, solutions to the Ernst equation are investigated that depend on two real analytic functions defined on the interval [0,1]. These solutions are introduced by a suitable limiting process of Bäcklund transformations applied to seed solutions of the Weyl class. It turns out that this class of solutions contains the general relativistic gravitational field of an arbitrary differentially rotating disk of dust, for which a continuous transition to some Newtonian disk exists. It will be shown how for given boundary conditions (i.e. proper surface mass density or angular velocity of the disk) the gravitational field can be approximated in terms of the above solutions. Furthermore, particular examples will be discussed, including disks with a realistic profile for the angular velocity and more exotic disks possessing two spatially separated ergoregions.

Ernst equation disk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Meinel, R. and Neugebauer, G. (1996). Phys. Lett. A 210, 160.Google Scholar
  2. 3.
    Korotkin, D. A. (1989). Theor. Math. Phys. 77, 1018.Google Scholar
  3. 4.
    Korotkin, D. A. (1993). Class. Quantum Grav. 10, 2587.Google Scholar
  4. 5.
    Korotkin, D. A. (1997). Phys. Lett. A 229, 195.Google Scholar
  5. 6.
    Meinel, R. and Neugebauer, G. (1997). Phys. Lett. A 229, 200.Google Scholar
  6. 7.
    Neugebauer, G. and Meinel, R. (1993). Astrophys. J. 414, L97.Google Scholar
  7. 8.
    Neugebauer, G. and Meinel, R. (1995). Phys. Rev. Lett. 75, 3046.Google Scholar
  8. 9.
    Neugebauer, G., Kleinwächter, A., and Meinel, R. (1996). Helv. Phys. Acta 69, 472.Google Scholar
  9. 10.
    Maison, D. (1978). Phys. Rev. Lett. 41, 521.Google Scholar
  10. 11.
    Belinski, V. A. and Zakharov, V. E. (1978). Zh. Eksper. Teoret. Fiz. 75, 195.Google Scholar
  11. 12.
    Harrison, B. K. (1978). Phys. Rev. Lett. 41, 119.Google Scholar
  12. 13.
    Herlt, E. (1978). Gen. Rel. Grav. 9, 711.Google Scholar
  13. 14.
    Hoenselaers, C., Kinnersley, W., and Xanthopoulos, B. C. (1979). Phys. Rev. Lett. 42, 481.Google Scholar
  14. 15.
    Neugebauer, G. (1979). J. Phys. A 12, L67.Google Scholar
  15. 16.
    Neugebauer, G. (1980). J. Phys. A 13, L19.Google Scholar
  16. 17.
    Neugebauer, G. (1980). J. Phys. A 13, 1737.Google Scholar
  17. 18.
    Hauser, I. and Ernst, F. J. (1979). Phys. Rev D 20, 362.Google Scholar
  18. 19.
    Hauser, I. and Ernst, F. J. (1979). Phys. Rev D 20, 1783.Google Scholar
  19. 20.
    Hauser, I. and Ernst, F. J. (1980). J. Math. Phys. 21, 1418.Google Scholar
  20. 21.
    Neugebauer, G. (1996). In General Relativity, eds. G. S. Hall and J. R. Pulham, Proceedings of the 46. Scottish Universities Summer School in Physics, Aberdeen, July 1995, pp. 61–81.Google Scholar
  21. 22.
    Ernst, F. J. (1968). Phys. Rev. 167, 1175.Google Scholar
  22. 23.
    Kramer, D. and Neugebauer, G. (1968). Commun. Math. Phys. 7, 173.Google Scholar
  23. 24.
    Kleinwächter, A. (1995). “Untersuchungen zu rotierenden Scheiben in der Allgemeinen Relativit ätstheorie.” Ph.D. Dissertation, Friedrich-Schiller-Universität Jena.Google Scholar
  24. 25.
    Kerr, R. (1963). Phys. Rev. Lett. 11, 237.Google Scholar
  25. 26.
    Bardeen, J. M. and Wagoner, R. V. (1971). Astrophys. J. 167, 359.Google Scholar
  26. 27.
    Brandt, J. C. (1960). Astrophys. J. 131, 293.Google Scholar
  27. 28.
    Neugebauer, G. (2000). Ann. Phys. (Leipzig) 9, 3–5, 342.Google Scholar
  28. 29.
    Alekseev, G. A. (2000). Ann. Phys. (Leipzig) 9, Spec. Issue, SI-17 and references therein.Google Scholar
  29. 30.
    Steudel, H., Meinel, R., and Neugebauer, G. (1997). J. Math. Phys. 38(9), 4692.Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • Marcus Ansorg
    • 1
  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations