Advertisement

Biologia Plantarum

, Volume 42, Issue 4, pp 505–513 | Cite as

Improved Regeneration Efficiency from Mature Embryos of Barley Cultivars

  • C. Akula
  • A. Akula
  • R. Henry
Article

Abstract

A reliable protocol for plant regeneration from mature embryo derived calli of nine barley (Hordeum vulgare) cultivars has been developed. The auxins 2,4-dichlorophenoxyacetic acid, picloram and dicamba proved effective in inducing callus from mature embryos of most of the barley cultivars. The induced primary callus was loose, friable and translucent. It ultimately yielded creamy white and compact callus after 2 - 3 transfers on fresh medium of the same composition. Callus induction and regeneration capacity were highly cultivar dependent. Addition of a high concentration of picloram (4 mg dm-3) promoted regeneration in 3 cultivars (Tallon, Grimmett and Sloop). In cv. Arapiles, abscisic acid and betaine were crucial in generating morphogenic callus from the mature embryos. Plants regenerated from these calli were hardy and developed roots readily when transferred to hormone free medium.

Hordeum vulgare tissue culture callus induction genotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abedinia, M., Henry, R.J., Blakeney, A.B., Lewin, L.: An efficient transformation system for the Australian rice cultivar. Jarrah.-Aust. J. Plant Physiol. 24: 133–141, 1997.CrossRefGoogle Scholar
  2. Bayliss, M.W., Dunn, S.D.M.: Factors affecting callus formation from embryos of barley (Hordeum vulgare).-Plant. Sci. 14: 311–316, 1979.CrossRefGoogle Scholar
  3. Botti, C., Vasil, I.K.: Plant regeneration by somatic embryogenesis from parts of cultured mature embryos of Pennisetum americanum (L.) Schum.-Z. Pflanzenphysiol. 111: 319–325, 1983.Google Scholar
  4. Bregitzer, P., Dahleen, L.S., Campbell, R.D.: Enhancement of plant regeneration from callus of commercial barley cultivars.-Plant Cell Rep. 17: 941–945, 1998.CrossRefGoogle Scholar
  5. Brown, C., Brooks, F.J., Pearson, D., Mathias, R.J.: Control of embryogenesis and organogensis in immature wheat embryo callus using increased osmolarity and abscisic acid.-J. Plant Physiol. 133: 727–733, 1989.Google Scholar
  6. Chu, C.C.: The N6 medium and its application to anther culture of cereal crops.-In: Proceedings of the Symposium Plant Tissue Culture. Pp. 45–50. Science Press, Peking 1978.Google Scholar
  7. Eapen, S., George, L.: High frequency plant regeneration through somatic embryogenesis in finger millet (Eleusine coracana (L.) Gaertn.).-Plant Sci. 61: 127–130, 1989.CrossRefGoogle Scholar
  8. Haydu, Z., Vasil, J.K.: Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schum.-Theor. appl. Genet. 59: 269–273, 1981.CrossRefGoogle Scholar
  9. Heyser, J.W., Nabors, M.W., Mackinnon, C., Dykes, T.A., DeMott, K.J., Kautzmann, D.C., Mujeeb-Kazi, A.: Long-term, high-frequency plant regeneration and the induction of somatic embryogenesis in callus cultures of wheat (Triticum aestivum L.).-Z. Pflanzenzücht. 94: 218–233, 1985.Google Scholar
  10. Kachhwaha, S., Varshney, A., Kothari, S.L. Somatic embryogenesis and long term high plant regeneration from barley (Hordeum vulgare).-Cereal Res. Commun. 25: 117–124, 1997.Google Scholar
  11. Khanna, H., Raina, S.K.: Enhanced in vitro plantlet regeneration from mature embryo-derived primary callus of a Basmati rice cultivar through modification of nitrate-nitrogen and ammonium-nitrogen concentrations.-J. Plant Biochem. Biotechnol. 6: 85–89, 1997.Google Scholar
  12. Lupotto, E.: Callus induction and plant regeneration from barley mature embryos. Ann. Bot. 54: 523–529, 1984.Google Scholar
  13. Murashige, T., Skoeg, F.: A revised medium for rapid growth and bioassay with tobacco tissue cultures.-Plant Physiol. 15: 473–497, 1962.CrossRefGoogle Scholar
  14. Nadar, H.M., Soepraptopo, S., Heinz, D.J., Ladd, S.L.: Fine structure of sugarcane (Saccharum sp.) callus and the role of auxin in embryogenesis.-Crop Sci. 18: 210–216, 1978.CrossRefGoogle Scholar
  15. Ozgen, M., Turet, M., Altmok, S., Sancak, C.: Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes.-Plant Cell Rep. 18: 331–335, 1998.CrossRefGoogle Scholar
  16. Rengel, Z.: Embryogenic callus induction and plant regeneration from cultured Hordeum vulgare mature embryos.-Plant Physiol. Biochem. 25: 43–48, 1987.Google Scholar
  17. Rengel, Z.: Effect of abscisic acid on plant development from Hordeum vulgare embryogenic callus.-Biochem. Physiol. Pflanz. 181: 605–610, 1986.Google Scholar
  18. Rueb, S.M., Leneman, M., Schilperoort, R.A., Hensgens, L.A.M.: Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa).-Plant Cell Tissue Organ Cult. 36: 259–264, 1994.CrossRefGoogle Scholar
  19. Suprasanna, P., Ganapathi, T.R., Rao, P.S.: Embryogenic ability in long term callus cultures of rice (Oryza sativa).-Cereal Res. Commun. 25: 27–33, 1997.Google Scholar
  20. Taniguchi, M., Enomoto, S., Komatsuda: Varietal difference in the ability of callus formation and plant regeneration from mature embryo in barley (Hordeum vulgare).-Jap. J. Breed. 41: 571–579, 1991.Google Scholar
  21. Tingay, S.D., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R.: Agrobacterium tumefaciens-mediated barley transformation.-Plant J. 11: 1369–1376, 1997.CrossRefGoogle Scholar
  22. Torbert, K. A., Rines, H.W., Somers, D.A.: Transformation of oat using mature embryo derived tissue cultures.-Crop Sci. 38: 226–231, 1998.CrossRefGoogle Scholar
  23. Vasil, V., Vasil, I.K.: Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum).-Ann. Bot. 47: 669–678, 1981.Google Scholar
  24. Vasil, V., Vasil, I.K.: Characterisation of embryogenic cell suspension cultures derived from cultured inflorescences of Pennisetum americanum.-Amer. J. Bot. 69: 1441–1449, 1982.CrossRefGoogle Scholar
  25. Wan, Y., Lemaux, P.G.: Generation of large numbers of independently transformed fertile barley plants.-Plant Physiol. 104: 37–48, 1994.PubMedGoogle Scholar
  26. Weigel, R.C., Hughes, K.W.: Long-term regeneration by somatic embryogenesis in barley (Hordeum vulgare) tissue cultures derived from apical meristem explants.-Plant Cell Tissue Organ Cult. 5: 151–162, 1985.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • C. Akula
    • 1
  • A. Akula
    • 1
  • R. Henry
    • 1
  1. 1.Centre for Plant Conservation Genetics, CRC for Molecular Plant BreedingSouthern Cross University LismoreAustralia

Personalised recommendations