Advertisement

Boundary-Layer Meteorology

, Volume 96, Issue 3, pp 337–370 | Cite as

Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report

  • J. Cuxart
  • C. Yagüe
  • G. Morales
  • E. Terradellas
  • J. Orbe
  • J. Calvo
  • A. Fernández
  • M. R. Soler
  • C. Infante
  • P. Buenestado
  • A. Espinalt
  • H. E. Joergensen
  • J. M. Rees
  • J. Vilá
  • J. M. Redondo
  • I. R. Cantalapiedra
  • L. Conangla
Article

Abstract

This paper describes the Stable AtmosphericBoundary Layer Experiment in Spain (SABLES 98),which took place over the northern Spanish plateaucomprising relatively flat grassland,in September 1998. The main objectives of the campaign were to study the properties of themid-latitude stable boundary layer (SBL).Instrumentation deployed on two meteorologicalmasts (of heights 10 m and 100 m)included five sonic anemometers, 15 thermocouples,five cup anemometers and three propeller anemometers,humidity sensors and radiometers.A Sensitron mini-sodar and a tetheredballoon were also operated continuously. Atriangular array of cup anemometers wasinstalled to allow the detection ofwave events. Two nocturnal periods analysedon 14–15 and 20–21 September are used toillustrate the wide-ranging characteristics of the SBL.

Drainage currents Internal gravity waves Low-level jet Stable boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre, J. C. and Mahrt, L.: 1982, ‘The Nocturnal Surface Inversion and the Influence of Clear-Air Radiative Cooling’, J. Atmos. Sci. 39, 864-878.Google Scholar
  2. Andren, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers: A Large-Eddy Simulation Study’, Quart. J. Roy. Meteorol. Soc. 121, 961-985.Google Scholar
  3. Arya, S. P. S.: 1981, ‘Parameterizing the Height of the Stable Atmospheric Boundary Layer’, J. Appl. Meteorol. 20, 1192-1202.Google Scholar
  4. Beyrich, F.: 1997, ‘Mixing Height Estimation from Sodar Data –-A Critical Discussion’, Atmos. Environ. 31, 3941-3953.Google Scholar
  5. Beyrich, F. and Weill, A.: 1993, ‘Some Aspects of Determining the Stable Boundary Layer Depth from Sodar Data’, Boundary-Layer Meteorol. 63, 97-116.Google Scholar
  6. Blackadar, A. K.: 1957, ‘Boundary Layer Wind Maxima and their Significance for the Growth of the Nocturnal Inversion’, Bull. Amer. Meteorol. Soc. 38, 283-290.Google Scholar
  7. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427-1440.Google Scholar
  8. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationship in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181-189.Google Scholar
  9. Caughey, S. J. and Readings, C. J.: 1975, ‘An Observation of Waves and Turbulence in the Earth's Boundary Layer’, Boundary-Layer Meteorol. 9, 279-296.Google Scholar
  10. Chimonas, G.: 1985, ‘Apparent Counter-Gradient Heat Fluxes Generated by Atmospheric Waves’, Boundary-Layer Meteorol. 31, 1-12.Google Scholar
  11. Clarke, R. H. and Brook, R. R.: 1979, ‘The Koorin Expedition –-Atmospheric Boundary Layer Data over Tropical Savannah Land’, Dept. of Science, Canberra, 359 pp.Google Scholar
  12. Clarke, R. H., Dyer, A. J., Brooke, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment. Boundary-Layer Data’, Paper No. 19, Division of Meteorol. Phys., CSIRO, Australia, 21 pp. and data Tables (316 pp.).Google Scholar
  13. Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: 2000, ‘A Turbulence Scheme Allowing for Mesoscale and Large-Eddy Simulations’, Quart. J. Roy. Meteorol. Soc. 126, 1-30.Google Scholar
  14. Deardorff, J. W.: 1972a, ‘Parameterization of the Planetary Boundary Layer for use in General Circulation Models’, Mon. Wea. Rev. 100, 93-106.Google Scholar
  15. Deardorff, J. W.: 1972b, ‘Rate of Growth of the Nocturnal Boundary Layer’, in H. W. Church and R. E. Luna (eds.), Proc. Symp. Air Pollution, Turbulence and Diffusion, U.S.A., pp. 183-190.Google Scholar
  16. Delage, Y.: 1974, ‘A Numerical Study of the Nocturnal Atmospheric Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 100, 351-364.Google Scholar
  17. Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited’, Quart. J. Roy. Meteorol. Soc. 116, 127-158.Google Scholar
  18. Derbyshire, S. H.: 1995, ‘Stable Boundary Layer: Observations, Models and Variability. Part I: Modelling and Measurements’, Boundary-Layer Meteorol. 74, 19-54.Google Scholar
  19. Duynkerke, P. G.: 1991, ‘Radiation Fog: A Comparison of Model Simulation with Detailed Observations’, Mon. Wea. Rev. 119, 324-341.Google Scholar
  20. Einaudi, F. and Finnigan, J. J.: 1981, ‘Interaction between an Internal Gravity Wave and the Planetary Boundary Layer, Part 1: Linear Analysis’, Quart. J. Roy. Meteorol. Soc. 107, 793-806.Google Scholar
  21. Einaudi, F. and Finnigan, J. J.: 1993, ‘Wave-Turbulence Dynamics in the Stably Stratified Boundary Layer’, J. Atmos. Sci. 50, 1841-1864.Google Scholar
  22. Garcia, J. A., Cancillo, M. L., Cano, J. L., Maqueda, G., Cana, L., and Yagüe, C.: 1997, ‘Study of the Evolution of the Nocturnal Boundary-Layer Height at the Central Nuclear of Almaraz (Spain): Diagnostic Relationships’, in R. San Jose and C. A. Brebbia (eds.), Measurements and Modelling in Environmental Pollution, Computational Mechanics Publications, pp. 131-150.Google Scholar
  23. Garratt, J. R.: 1982, ‘Observations in the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 22, 21-48.Google Scholar
  24. Garratt, J. R.: 1985, ‘The Inland Boundary Layer at Low Latitudes. I. The Nocturnal Jet’, Boundary-Layer Meteorol. 32, 307-327.Google Scholar
  25. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793-815.Google Scholar
  26. Izumi, Y.: 1971, ‘Kansas 1968 Field Program Data Report’, Environmental Research Papers No. 369, AFC RL-72 0041, Air Force Cambridge Research Lab., Bedford, U.S.A.Google Scholar
  27. Izumi, Y. and Caughey, J. S.: 1976, ‘Minnesota 1973 Atmospheric Boundary Layer Experiment Data Report’, Environmental Research Papers No. 547, Air Force Cambridge Research Lab., Bedford, U.S.A., 79 pp.Google Scholar
  28. Kaimal, J. C. and Gaynor, J. E.: 1983, ‘Boulder Atmospheric Observatory’, J. Clim. Appl. Meteorol. 22, 863-880.Google Scholar
  29. King, J. C.: 1989, ‘Stable Antarctic Boundary Layer Experiment at Halley Station’, Weather 44, 398-405.Google Scholar
  30. Kondo, J., Kanechica, O., and Yasuda, N.: 1978, ‘Heat and Momentum Transfers under Strong Stability in the Atmospheric Surface Layer’, J. Atmos. Sci. 35, 1012-1021.Google Scholar
  31. Lafore, J. P., Stein J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Hereil, P., Mascart, P., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vila-Guerau de Arellano, J.: 1998, ‘The Meso-Nh Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulation’, Ann. Geophys. 16, 90-109.Google Scholar
  32. Lettau, H. H. and Davidson, B.: 1957, Exploring the Atmosphere's First Mile, Pergamon Press, U.K. 578 pp.Google Scholar
  33. Mahrt, L.: 1981a, ‘The Early Evening Boundary Layer Transition’, Quart. J. Roy. Meteorol. Soc. 107, 329-343.Google Scholar
  34. Mahrt, L.: 1981b, ‘Modelling the Depth of the Stable Boundary Layer’, Boundary-Layer Meteorol. 21, 3-19.Google Scholar
  35. Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’, J. Atmos. Sci. 42, 2333-2349.Google Scholar
  36. Mahrt, L.: 1989, ‘Intermittency of Atmospheric Turbulence’, J. Atmos. Sci. 46, 79-95.Google Scholar
  37. Mahrt, L.: 1999, ‘Stratified Atmospheric Boundary Layers’, Boundary-Layer Meteorol. 90, 375-396.Google Scholar
  38. Mahrt, L., Heald, R. C., Lenschow, D. H., Stankov, B. B., and Troen, I. B.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247-264.Google Scholar
  39. Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 53, 117-162.Google Scholar
  40. Nai-Ping, L., Neff, W. D., and Kaimal, J. C.: 1983, ‘Wave and Turbulence Structure in a Disturbed Nocturnal Inversion’, Boundary-Layer Meteorol. 26, 141-155.Google Scholar
  41. Nieuwstadt, F. T. M.: 1984a, ‘Some Aspects of the Turbulent Stable Boundary Layer’, Boundary-Layer Meteorol. 30, 31-55.Google Scholar
  42. Nieuwstadt, F. T. M.: 1984b, ‘The Turbulent Structure of the Stable Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202-2216.Google Scholar
  43. Nieuwstadt, F. T. M. and Driedonks, A. G. M.: 1979, ‘The Nocturnal Boundary Layer: A Case Study Compared with Model Calculations’, J. Appl. Meteorol. 18, 1397-1405.Google Scholar
  44. Ostdiek, V. and Blumen, W.: 1997, ‘A Dynamic Trio: Inertial Oscillation, Deformation Frontogenesis, and the Ekman-Taylor Boundary Layer’, J. Atmos. Sci. 54, 1490-1502.Google Scholar
  45. Rees, J. M.: 1991, ‘On the Characteristics of Eddies in the Stable Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 55, 325-343.Google Scholar
  46. Rees, J. M. and Mobbs, S. D.: 1988, ‘Studies of Internal Gravity Waves at Halley Base, Antarctica, Using Wind Observations’, Quart. J. Roy. Meteorol. Soc. 114, 939-966.Google Scholar
  47. Rees, J. M., Denholm-Price, J. C. W., King, J. C., and Anderson, P. S.: 2000, ‘A Climatological Study of Internal Gravity Waves in the Atmospheric Boundary Layer’, J. Atmos. Sci., in press.Google Scholar
  48. San Jose, R., Casanova, J. L., Viloria, R. E., and Casanova, J.: 1985, ‘Evaluation of the Turbulent Parameters of the Unstable Surface Boundary Layer outside Businger's Range’, Atmos. Environ. 19, 1555-1461.Google Scholar
  49. Smedman, A. S.: 1988, ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 44, 231-253.Google Scholar
  50. Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer, Prentice Hall, U.S.A., 317 pp.Google Scholar
  51. Stewart, R. W.: 1969, ‘Turbulence and Waves in a Stratified Atmosphere’, Radio Science 4, 1269-1278.Google Scholar
  52. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.Google Scholar
  53. Thorpe, A. J. and Guymer, T. H.: 1977, ‘The Nocturnal Jet’, Quart. J. Roy. Meteorol. Soc. 103, 633-653.Google Scholar
  54. Van Ulden, A. P. and Wieringa, J.: 1996, ‘Atmospheric Boundary Layer Research at Cabauw’, Boundary-Layer Meteorol. 78, 39-69.Google Scholar
  55. Wittich, K. P. and Roth, R.: 1984, ‘A Case Study of Nocturnal Wind and Temperature Profiles over the Inhomogeneous Terrain of Northern Germany with Some Considerations of Turbulent Fluxes’, Boundary-Layer Meteorol. 28, 169-186.Google Scholar
  56. Wyngaard, J. C.: 1973, ‘On Surface Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Amer. Meteorol. Soc., pp. 105-120.Google Scholar
  57. Wyngaard, J. C.: 1975, ‘Modelling the Planetary Boundary Layer –-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441-460.Google Scholar
  58. Yagüe, C. and Cano, J. L.: 1994a, ‘The Influence of Stratification on Heat and Momentum Turbulent Transfer in Antarctica’, Boundary-Layer Meteorol. 69, 123-136.Google Scholar
  59. Yagüe, C. and Cano, J. L.: 1994b, ‘Eddy Transfer Processes in the Atmospheric Boundary Layer’, Atmos. Environ. 28, 1275-1289.Google Scholar
  60. Yagüe, C. and Redondo, J. M.: 1995, ‘A Case Study of Turbulent Parameters during the Antarctic Winter’, Antarc. Sci. 7, 421-433.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • J. Cuxart
    • 1
    • 2
  • C. Yagüe
    • 1
  • G. Morales
    • 1
  • E. Terradellas
    • 1
  • J. Orbe
    • 1
  • J. Calvo
    • 1
  • A. Fernández
    • 1
  • M. R. Soler
    • 3
  • C. Infante
    • 3
  • P. Buenestado
    • 3
  • A. Espinalt
    • 3
  • H. E. Joergensen
    • 4
  • J. M. Rees
    • 5
  • J. Vilá
    • 6
  • J. M. Redondo
    • 6
  • I. R. Cantalapiedra
    • 6
  • L. Conangla
    • 6
  1. 1.Instituto Nacional de MeteorologíaSpain
  2. 2.Servicio de Modelización Numérica del TiempoInstituto Nacional de MeteorologíaMadridSpain
  3. 3.Department of Astronomy and MeteorologyUniversity of BarcelonaSpain
  4. 4.Risoe National LaboratoryDenmark
  5. 5.University of SheffieldU.K.
  6. 6.Department Física AplicadaUniversitat Politécnica de CatalunyaSpain

Personalised recommendations