Antonie van Leeuwenhoek

, Volume 77, Issue 4, pp 369–377 | Cite as

Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons

Abstract

The aim of this study was to improve our knowledge about the taxonomy and phylogeny of the family Saprolegniaceae, a group of water molds including several pathogens of plants, fish and crustacea. ITS and LSU rDNA were sequenced for representatives of forty species corresponding to ten genera (Achlya, Aphanomyces, Brevilegnia, Dictyuchus, Leptolegenia, Plectospira, Pythiopsis, Saprolegnia, Thraustotheca). Phenetic and cladistic analyses were then carried out. The species Brevilegnia bispora does not appear to belong to the family Saprolegniaceae. Plectospira myrianda clusters with Aphanomyces spp. and they constitute an ancestral group. (Thraustotheca clavata is closely related to the eccentric species of the genus Achlya. The genus Achlya appears polyphyletic, corroborating more or less the three known subgroups, defined by their sexual spore type (eccentric, centric and subcentric). The achlyoid type of spore dehiscence, shared by Aphanomyces and Achlya genera, is shown to be an ancestral character. The saprolegnioid, dictyoid and thraustothecoid types of spore dehiscence are derived characters but their relative evolutionary positions are not resolved.

Achlya ITS rDNA LSU phylogeny Saprolegnia Saprolegniaceae and taxonomy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt KE & Grossman AR (1993) Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Ann. Mycol. 7: 441–472Google Scholar
  2. Atkinson GF (1909) Some problems in the evolution of the lower fungi. Mol. Biol. 21: 27–38Google Scholar
  3. Barriel V (1994) Phylogénies moléculaires et insertions-délétions de nucléotides. C. R. Acad. Sci. Paris Sciences de la Vie/Life Sciences 317: 693–701Google Scholar
  4. Coker WC & Matthews VD (1937) Saprolegniales. North. Amer. Flora 2: 15–76Google Scholar
  5. Daugherty J, Evans TM, Skillom T, Watson LE & Money NP (1998) Evolution of spore release mechanisms in the Saprolegniaceae (Oomycetes): Evidence from a phylogenetic analysis of internal transcribed spacer sequences. Fung. Gen. Biol. 24: 354–363Google Scholar
  6. De Bary A & Woronin M (1881) Untersuchuingen über Peronosporeen und Saprolegnieen und die Grundlagen eines natürlichen Systems der Pilze. Beitr. Morph. Phys. Der Pilze 4: 1–145Google Scholar
  7. De Bary A (1888) Species der Saprolegnieen. Bot. Ztg. 46: 599–610, 613–621, 629–636, 645–653Google Scholar
  8. De Kinkelin P, Michel C & Ghittino P (1985) —Précis de pathologie des poissons, INRA-OIE, 348 pGoogle Scholar
  9. Denis A (1985) Saprolegniales de poissons. Epidémiologie, thérapie, biotaxonomie. Thèse. Université Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  10. Dick MW (1969) Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae and Pithyaceae. I. Sexual reproduction. New Phytol. 68: 751–775Google Scholar
  11. Dick MW (1972) Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae, and Pithyaceae. II. Cytogenetic systems. New Phytol. 71: 1151–1159Google Scholar
  12. Dick MW (1973) Saprolegniales and Leptomitales. In: Ainsworth GC, Sparrow FK, Sussman AS (Eds). The Fungi - an advanced treatise, vol IVB (pp 113–158). Academic Press, New YorkGoogle Scholar
  13. Dieguez-Uribeondo J, Huang T-S, Cerenius L & Soderhall K (1995) Physiological adaptation of an Aphanomyces astaci strain isolated from the freshwater crayfish Procambarus clarkii. Mycol. Res. 99: 574–578Google Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol. 39: 783–791Google Scholar
  15. Fisher A (1892) Phycomycetes. Die Pilze Deutschlands, Oesterreichs und Schweiz. In Rabenhorst, Kryptogamen-Fl. 4: 1–490Google Scholar
  16. Forbes EJ (1935) Observations on some British water molds (Saprolegniales and Blastocladiales). Trans. Brit. Mycol. Soc.19: 221–239Google Scholar
  17. Höhnk W (1933) Polyplanetism and zoospore germination in Saprolegniaceae and Pythium. Amer. J. Bot. 20: 45–62Google Scholar
  18. Horton JS & Horgen PA (1989) Polymorphisms in the nuclear DNA of Achlya species: some taxonomic implications. Can. J. Microbiol. 35: 1146–1155Google Scholar
  19. Johnson JR (1956) The genus Achlya. Morphology and taxonomy. University of Michigan Press, Ann ArborGoogle Scholar
  20. Larsson M (1994) Pathogenicity, morphology and isozyme variability among isolates of Aphanomyces spp. from weeds and various crop plants. Mycol. Res. 98: 231–240Google Scholar
  21. Liu C & Volz PA. (1976) On the ecology of the Saprolegniaceae. Phytologia 34: 209–230Google Scholar
  22. Molina FI, Jong SC & Ma G (1995) Molecular characterization and identification of Saprolegnia by RFLP of genes coding for ribosomal RNA. Antonie van Leeuwenhoek 68: 65–74Google Scholar
  23. Papatheodorou V (1980) Les Mycoses chez les poissons. Etiologie, pathogénie, traitement. Thèse Institut National Polytechnique, ToulouseGoogle Scholar
  24. Philippe H (1993) MUST: a computer package of management utilities for sequences and trees. Nucl. Acids. Res. 21: 5264–5272PubMedGoogle Scholar
  25. Powell MJ & Blackwell WH (1998) Phenetic analysis of genera of Saprolegniaceae (Oomycetes). Mycotaxon 68: 505–516Google Scholar
  26. Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425PubMedGoogle Scholar
  27. Scott WW (1961) A monograph of the genus Aphanomyces. Virginia Agr. Exp. Sta. Tech. Bull. 151: 1–95Google Scholar
  28. Sekino T, Kubota S, Morikawa S, Tashiro F & Komatsu T (1987) Studies on the dynamics of water molds in the ponds of fish farm; Saprolegnia, Achlya, Aphanomyces, Leptolegnia. Bull. Nippon Vet. Zootech. Coll. 36: 70–77Google Scholar
  29. Seymour RL (1970) The genus Saprolegnia. Nova Hedwigia 19: iv–124Google Scholar
  30. Swofford DL (1993) PAUP: Phylogenetic Analysis Using Parsimony Version 3.1, Computer program distributed by the Illinois Natural History Survey, Champaign, IllinoisGoogle Scholar
  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence aligment aided by quality analysis tools. Nucl. Acids. Res. 25: 4876–4882PubMedGoogle Scholar
  32. White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand DH, Sninsky J & White TJ (Eds) PCR protocols (pp 315–322). Academic Press, San DiegoGoogle Scholar
  33. Willoughby LG (1978) Saprolegnias of salmonid fish in Windermere: a critical analysis. J. Fish Dis. 1: 51–67Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  1. 1.UMR CNRS/IRD 9926, Centre d'Etudes sur le Polymorphisme des Microorganismes, IRDMontpellierFrance
  2. 2.UMR INRA-AFSSA-ENVA Biologie Moléculaire et Immunologie Parasitaires et FongiquesEcole NationaleVétérinaire d'AlfortMaisons-Alfort CedexFrance

Personalised recommendations