Astrophysics and Space Science

, Volume 271, Issue 2, pp 181–203 | Cite as

Cosmic Time Variation of the Gravitational Constant

  • Roman Tomaschitz


A pre-relativistic cosmological approach to electromagnetism and gravitation is explored that leads to a cosmic time variation of the fundamental constants. Space itself is supposed to have physical substance, which manifests by its permeability. The scale factors of the permeability tensor induce a time variation of the fundamental constants. Atomic radii, periods, and energy levels scale in cosmic time, which results in dispersionless redshifts without invoking a space expansion. Hubble constant and deceleration parameter are reviewed in this context. The time variation of the gravitational constant at the present epoch can be expressed in terms of these quantities. This provides a completely new way to restrain the deceleration parameter from laboratory bounds on the time variation of the gravitational constant. This variation also affects the redshift dependence of angular diameters and the surface brightness, and we study in some detail the redshift scaling of the linear sizes of radio sources. The effect of the varying constants on source counts is discussed, and an estimate on the curvature radius of the hyperbolic3-space is inferred from the peak in the quasar distribution. The background radiation in this dispersionless, permeable space-time stays perfectly Planckian. Cosmic time is discussed in terms of atomic and gravitational clocks, as well as cosmological age dating, in particular how the age of the Universe relates to the age of the Galaxy in a permeable space-time.


Radio Source Deceleration Parameter Gravitational Constant Surface Brightness Cosmic Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahcall, J.N., Pinsonneault, M.H. and Wasserburg, G.J.: 1995, Solar models with helium and heavy element diffusion, Rev.Mod.Phys. 67, 781.CrossRefADSGoogle Scholar
  2. Barthel, P.D. and Miley, G.K.: 1988, Evolution of radio structure in quasars, Nature 333, 319.CrossRefADSGoogle Scholar
  3. Caso, C., et al.: 1998, Review of particle physics, Eur.Phys.J.C 3, 1.Google Scholar
  4. Chandrasekhar, S.: 1967, An Introduction to the Study of Stellar Structure, Dover Publ., New York.Google Scholar
  5. Cowan, J.J., et al.: 1997, The thorium chronometer in CS 22892–052: Estimates of the age of the Galaxy, Astrophys.J. 480, 246.CrossRefADSGoogle Scholar
  6. Cowan, J.J., et al.: 1999, R-process abundances and chronometers in metal-poor stars, Astrophys.J. 521, 194.CrossRefADSGoogle Scholar
  7. Dabrowski, Y., Lasenby, A. and Saunders, R.: 1995, Testing the angular-size versus redshift relation with compact radio sources, Mon.Not.R.Astron.Soc. 277, 753.ADSGoogle Scholar
  8. Davies, P.C.W.: 1972, Time variation of the coupling constants, J.Phys.A 5, 1296.CrossRefADSGoogle Scholar
  9. Degl'Innocenti, S., et al.: 1996, Time variation of Newton's constant and the age of globular clusters, Astron.Astrophys. 312, 345.ADSGoogle Scholar
  10. Dickey, J.O., et al.: 1994, Lunar laser ranging: A continuing legacy of the Apollo program, Science 265, 482.ADSGoogle Scholar
  11. Dirac, P.A.M.: 1937, The cosmological constants, Nature 139, 323; also in: R.H. Dalitz (ed.), The Collected Works of P.A.M.Dirac, 1924–1948, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  12. Dirac, P.A.M.: 1974, Cosmological models and the Large Numbers hypothesis, Proc.Roy.Soc.(London) A 338, 439.ADSGoogle Scholar
  13. Dyson, F.J.: 1972, The fundamental constants and their time variation, in: A. Salam and E.P. Wigner (eds.), Aspects of Quantum Theory, Cambridge Univ. Press, Cambridge.Google Scholar
  14. García-Berro, E., et al.: 1995, The rate of change of the gravitational constant and the cooling of white dwarfs, Mon.Not.R.Astron.Soc. 277, 801.ADSGoogle Scholar
  15. Guenther, D.B., Krauss, L.M. and Demarque, P.: 1998, Testing the constancy of the gravitational constant using helioseismology, Astrophys.J. 498, 871.CrossRefADSGoogle Scholar
  16. Hartwick, F.D. and Schade, D.: 1990, The space distribution of quasars, Annu.Rev.Astron.Astrophys. 28, 437.CrossRefADSGoogle Scholar
  17. Irvine, J.M.: 1983, Limits on the variability of coupling constants from the Oklo natural reactor, Phil.Trans.Roy.Soc.(London) A 310, 239.ADSGoogle Scholar
  18. Kaspi, V.M., Taylor, J.H. and Ryba, M.F.: 1994, High-precision timing of millisecond pulsars, Astrophys.J. 428, 713.CrossRefADSGoogle Scholar
  19. Kasting, J.F. and Grinspoon, D.H.: 1991, The faint young sun problem, in: C.P. Sonett et al. (eds.), The Sun in Time, Univ. of Arizona Press, Tucson.Google Scholar
  20. Lindner, M., et al.: 1986, Direct laboratory determination of the 187Re half-life, Nature 320, 246.CrossRefGoogle Scholar
  21. Lineweaver, C.H.: 1999, A younger age for the Universe, Science 284, 1503.CrossRefADSGoogle Scholar
  22. Maloney, A. and Petrosian, V.: 1999, The evolution and luminosity function of quasars from complete optical surveys, Astrophys.J. 518, 32.CrossRefADSGoogle Scholar
  23. McElhinny, M.W., Taylor, S.R. and Stevenson, D.J.: 1978, Limits on the expansion of Earth, Moon, Mars & Mercury and to changes in the gravitational constant, Nature 271, 316.CrossRefADSGoogle Scholar
  24. Moles, M., et al.: 1998, On the use of scaling relations for the Tolman test, Astrophys.J.Lett. 495, L31.CrossRefADSGoogle Scholar
  25. Mould, J., Freedman, W. and Kennicutt, R.: 2000, Calibration of the extragalactic distance scale, Rep.Prog.Phys., to appear.Google Scholar
  26. Neeser, M.J., et al.: 1995, The linear-size evolution of classical double radio sources, Astrophys.J. 451, 76.CrossRefADSGoogle Scholar
  27. Newman, M.J. and Rood, R.T.: 1977, Implications of solar evolution for the Earth's early atmosphere, Science 198, 1035.ADSGoogle Scholar
  28. Perlmutter, S., et al.: 1999, Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys.J. 517, 565.CrossRefADSGoogle Scholar
  29. Petrosian, V.: 1998, New & old tests of cosmological models and the evolution of galaxies, Astrophys.J. 507, 1.CrossRefADSGoogle Scholar
  30. Prestage, J.D., Tjoelker, R.L. and Maleki, L.: 1995, Atomic clocks and variations of the fine structure constant, Phys.Rev.Lett. 74, 3511.CrossRefADSGoogle Scholar
  31. Riess, A.G., et al.: 1998, Observational evidence from supernovae for an accelerating universe, Astron.J. 116, 1009.CrossRefADSGoogle Scholar
  32. Robertson, H.P. and Noonan, T.W.: 1968, Relativity and Cosmology, Saunders, Philadelphia.Google Scholar
  33. Sagan, C. and Chyba, C.: 1997, The early faint sun paradox, Science 276, 1217.CrossRefADSGoogle Scholar
  34. Sandage, A.: 1988, Observational tests of world models, Annu.Rev.Astron.Astrophys. 26, 561.CrossRefADSGoogle Scholar
  35. Sandage, A. and Perelmuter, J.-M.: 1991, The surface brightness test for the expansion of the universe, Astrophys.J. 370, 455.CrossRefADSGoogle Scholar
  36. Schmidt, M., Schneider, D.P. and Gunn, J.E.: 1995, Spectroscopic CCD surveys for quasars at large redshift, Astron.J. 110, 68.CrossRefADSGoogle Scholar
  37. Shapiro, I.I.: 1990, Solar system tests of GR, in: N. Ashby et al. (eds.), General Relativity and Gravitation, Cambridge Univ. Press, Cambridge.Google Scholar
  38. Shlyakhter, A.J.: 1976, Direct test of the constancy of fundamental nuclear constants, Nature 264, 340.CrossRefADSGoogle Scholar
  39. Steigman, G.: 1978, A crucial test of the Dirac cosmologies, Astrophys.J. 221, 407.CrossRefADSGoogle Scholar
  40. Teller, E.: 1948, On the change of physical constants, Phys.Rev. 73, 801.CrossRefADSGoogle Scholar
  41. Thorsett, S.E.: 1996, The gravitational constant, the Chandrasekhar limit, and neutron star masses, Phys.Rev.Lett. 77, 1432.CrossRefADSGoogle Scholar
  42. Tomaschitz, R.: 1997, Chaos and topological evolution in cosmology, Int.J.Bifurcation & Chaos 7, 1847.zbMATHMathSciNetCrossRefGoogle Scholar
  43. Tomaschitz, R.: 1998a, Cosmic ether, Int.J.Theor.Phys. 37, 1121.zbMATHMathSciNetCrossRefGoogle Scholar
  44. Tomaschitz, R.: 1998b, Nonlinear, non-relativistic gravity, Chaos, Solitons & Fractals 9, 1199.zbMATHMathSciNetCrossRefGoogle Scholar
  45. Tomaschitz, R.: 1998c, Ether, luminosity and galactic source counts, Astrophys.Space Sci. 259, 255.zbMATHCrossRefADSGoogle Scholar
  46. Tomaschitz, R.: 1999a, Cosmic tachyon background radiation, Int.J.Mod.Phys.A 14, 4275.zbMATHMathSciNetCrossRefADSGoogle Scholar
  47. Tomaschitz, R.: 1999b, Tachyons in the Milne universe, Class.Quant.Grav. 16, 3349.zbMATHMathSciNetCrossRefADSGoogle Scholar
  48. Tomaschitz, R.: 1999c, Interaction of tachyons with matter, Int.J.Mod.Phys.A 14, 5137.zbMATHMathSciNetCrossRefADSGoogle Scholar
  49. VandenBerg, D.A., Bolte, M. and Stetson, P.B.: 1996, The age of the galactic globular cluster system, Annu.Rev.Astron.Astrophys. 34, 461.CrossRefADSGoogle Scholar
  50. Varshalovich, D.A. and Potekhin, A.Y.: 1995, Cosmological variability of fundamental physical constants, Space Sci.Rev. 74, 259.CrossRefADSGoogle Scholar
  51. Weinberg, S.: 1972, Gravitation and Cosmology, Wiley, New York.Google Scholar
  52. Whittaker, E.: 1951, A History of the Theories of Aether and Electricity, Vol. 1, Thomas Nelson & Sons, London.Google Scholar
  53. Williams, J.G., Newhall, X.X. and Dickey, J.O.: 1996, Relativity parameters determined from lunar laser ranging, Phys.Rev.D 53, 6730.CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Roman Tomaschitz
    • 1
  1. 1.Department of PhysicsHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations