Advertisement

Boundary-Layer Meteorology

, Volume 94, Issue 3, pp 357–397 | Cite as

A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models

  • Valéry Masson
Article

Abstract

An urban surface scheme for atmospheric mesoscale models ispresented. A generalization of local canyon geometry isdefined instead of the usual bare soil formulation currently usedto represent cities in atmospheric models. This allows refinement ofthe radiative budgets as well as momentum, turbulent heat and ground fluxes.The scheme is aimed to be as general as possible, in order to representany city in the world, for any time or weather condition(heat island cooling by night, urban wake, water evaporation after rainfalland snow effects).

Two main parts of the scheme are validated against published data.Firstly, it is shown that the evolution of the model-predictedfluxes during a night with calm winds is satisfactory, considering both the longwave budget and the surface temperatures. Secondly, the original shortwave scheme is tested off-line and compared to the effective albedoof a canyon scale model. These two validations show that the radiative energy input to the urban surface model is realistic.

Sensitivity tests of the model are performed for one-yearsimulation periods, for both oceanic and continental climates. The scheme has the ability to retrieve, without ad hoc assumptions, the diurnal hysteresis between the turbulent heat flux and ground heat flux. It reproduces the damping of the daytime turbulent heat flux by the heat storage flux observed in city centres. The latent heat flux is negligible on average,but can be large when short time scales are considered (especially afterrainfall). It also suggests that in densely built areas, domesticheating can overwhelm the net radiation, and supply a continuous turbulentheat flux towards the atmosphere. This becomes very important inwinter for continental climates. Finally, a comparison with a vegetation scheme shows that the suburban environment can be represented with a bare soil formulation for large temporal or spatial averages (typical of globalclimatic studies), but that a surface scheme dedicated to the urban surface is necessary when smaller scales are considered: town meteorological forecasts, mesoscale or local studies.

Surface scheme Urban Canyon Urban energy balance Urban water balance Urban boundary layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, M.: 1982, 'Urban Albedo as a Function of the Urban Structure-A Model Experiment (Part I)', Boundary-Layer Meteorol. 23, 405–413.Google Scholar
  2. André, J., Goutorbe, J., Perrier, A., Becker, F., Bessemoulin, P., Bougeault, P., Brunet, Y., Brutsaert, W., Carlson, T., Cuenca, R., Gash, J., Gelpe, J., Hildebrand, P., Lagouarde, J., Lloyd, C., Mahrt, L., Mascart, P., Mazaudier, C., Noilhan, J., Ottlé, C., Payen, M., Phulpin, T., Stull, R., Shuttleworth, J., Schmugge, T., Taconet, O., Tarrieu, C., Thépenier, R., Valencogne, C., Vidal-Madjar, D., and Weill, A.: 1988, 'Evaporation over Land Surfaces: First Results from HAPEX-MOBILHY Special Observing Period', Ann. Geophys. 6, 477–492.Google Scholar
  3. Arnfield, J., Herbert, J.M., and Johnson, G. T.: 1998, 'A Numerical Simulation Investigation of Urban Canyon Energy Budget Variations', in Proceedings of 2nd AMS Urban Environment Symposium.Google Scholar
  4. Arya, S. P.: 1988, Introduction to Micrometeorology, Academic Press, Inc., New York, 303 pp.Google Scholar
  5. Best, M. J.: 1998, 'Representing Urban Areas in Numerical Weather Prediction Models', in Proceedings of 2nd AMS Urban Environment Symposium.Google Scholar
  6. Bottema, M.: 1997, 'Urban Roughness Modelling in Relation to Pollutant Dispersion', Atmos. Environ. 18, 3059–3075.Google Scholar
  7. Deardorff, J.: 1978, 'Efficient Prediction of Ground Temperature and Moisture with Inclusion of a Layer of Vegetation', J. Geophys. Res. 83, 1889–1903.Google Scholar
  8. Feigenwinter, C., Vogt, R., and Parlow, E.: 1999, 'Vertical Structure of Selected Turbulence Characteristics above an Urban Canopy', Theor. Appl. Climatol. 62, 51–63.Google Scholar
  9. Grimmond, C. and Oke, T.: 1999a, 'Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model', J. Appl. Meteorol. 38, 922–940.Google Scholar
  10. Grimmond, C. and Oke, T.: 1999b, 'Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form', J. Appl. Meteorol. 38, 1262–1292.Google Scholar
  11. Grimmond, C. S. B., Cleugh, H. A., and Oke, T. R.: 1991, 'An Objective Urban Heat Storage Model and its Comparison with Other Schemes', Atmos. Environ. 25B, 311–326.Google Scholar
  12. Grimmond, C. S. B. and Oke, T. R.: 1991, 'An Evapotranspiration-Interception Model for Urban Areas', Water Resour. Res. 27, 1739–1755.Google Scholar
  13. Grimmond, C. S. B. and Oke, T. R.: 1995, 'Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four North American Cities', J. Appl. Meteorol. 34, 873–889.Google Scholar
  14. Johnson, G. T., Oke, T. R., Lyons, T. J., Steyn, D. G., Watson, I. D., and Voogt, J. A.: 1991, 'Simulation of Surface Urban Heat Islands under 'Ideal' Conditions at Night. Part I: Theory and Tests Against Field Data', Boundary-Layer Meteorol. 56, 275–294.Google Scholar
  15. Mascart, P., Noilhan, J., and Giordani, H.: 1995, 'A Modified Parameterization of Flux-Profile Relationship in the Surface Layer Using Different Roughness Length Values for Heat and Momentum', Boundary-Layer Meteorol. 72, 331–344.Google Scholar
  16. Menut, L.: 1997, Etude expérimentale et théorique de la couche limite Atmosphérique en agglomération Parisienne (Experimental and Theoretical Study of the ABL in Paris Area), Ph.D. Thesis, University Pierre et Marie Curie, Paris, France, 200 pp.Google Scholar
  17. Mestayer, P.G. and Anquetin, S.: 1995, 'Climatology of Cities', in F.-S. Rys and A. Gyr (eds.), Diffusion and Transport of Pollutants in Atmospheric Meso-Scale Flow Fields, Atmospheric Sciences Library, Kluwer Academic Publishers, Dordrecht, pp. 165–189.Google Scholar
  18. Mills, G. M.: 1993, 'Simulation of the Energy Budget of an Urban Canyon-I. Model Structure and Sensitivity Test', Atmos. Environ. 27B, 157–170.Google Scholar
  19. Noilhan, J.: 1981, 'A Model for the Net Total Radiation Flux at the Surfaces of a Building', Building Environ. 16, 259–266.Google Scholar
  20. Noilhan, J. and Planton, S.: 1989, 'A Simple Parameterization of Land Surface Processes for Meteorological Models', Mon. Wea. Rev. 117, 536–549.Google Scholar
  21. Nunez, M. and T. R. Oke: 1976, 'Long-Wave Radiative Flux Divergence and Nocturnal Cooling of the Urban Atmosphere. II: Within an Urban Canyon', Boundary-Layer Meteorol. 10, 121–135.Google Scholar
  22. Nunez, M. and Oke, T. R.: 1977, 'The Energy Balance of an Urban Canyon', J. Appl. Meteorol. 16, 11–19.Google Scholar
  23. Oke, T. R.: 1987, Boundary Layer Climates, 2nd edn., Methuen, London, 435 pp.Google Scholar
  24. Oke, T. R.: 1988, 'The Urban Energy Balance', Prog. Phys. Geogr. 12, 471–508.Google Scholar
  25. Oke, T., Spronken-Smith, R., Jáuregui, E., and Grimmond, C.: 1999, 'The Energy Balance of Central Mexico City during the Dry Season', Atmos. Environ. 33, 3919–3930.Google Scholar
  26. Petersen, R. L.: 1997, 'A Wind Tunnel Evaluation of Methods for Estimating Surface Roughness Length at Industrial Facilities', Atmos. Environ. 31, 45–57.Google Scholar
  27. Richards, K. and Oke, T. R.: 1998, 'Dew in Urban Environments', in Proceedings of 2nd AMS Urban Environment Symposium.Google Scholar
  28. Ross, S. L. and Oke, T. R.: 1988, 'Tests of Three Urban Energy Balance Models', Boundary-Layer Meteorol. 44, 73–96.Google Scholar
  29. Rotach,M.W.: 1995, 'Profiles of Turbulence Statistics in and above an Urban Street Canyon', Atmos. Environ. 29, 1473–1486.Google Scholar
  30. Roth, M.: 1993, 'Turbulent Transfert: Relationships over an Urban Surface. II: Integral Statistics', Quart. J. Roy. Meteorol. Soc. 119, 1105–1120.Google Scholar
  31. Roth, M. and Oke, T.: 1993, 'Turbulent Transfert: Relationships over an Urban Surface. II: Spectral Characteristics', Quart. J. Roy. Meteorol. Soc. 119, 1071–1104.Google Scholar
  32. Rowley, F.B., Algren, A. B., and Blackshaw, J. L.: 1930, 'Surface Conductances as Affected by Air Velocity, Temperature and Character of Surface', ASHRAE Trans. 36, 429–446.Google Scholar
  33. Rowley, F. B. and Eckley, W. A.: 1932, 'Surface Coefficients as Affected by Wind Direction', ASHRAE Trans. 38, 33–46.Google Scholar
  34. Schlosser, C.A., Robock, A., Vinnikov, K., Speranskaya, N., and Xue, Y.: 1997, '18-Year Land Surface Hydrology Model Simulations for a Midlatitude Grassland Catchment in Valdai, Russia', Mon. Wea. Rev. 125, 3279–3296.Google Scholar
  35. Seaman, N. L., Ludwig, F. F., Donall, E. G., Warner, T. T., and Bhumralkar, C.M.: 1989, 'Numerical Studies of Urban Planetary Boundary-Layer Structure under Realistic Synoptic Conditions', J. Appl. Meteorol. 28, 760–781.Google Scholar
  36. Soux, A., Oke, T. R., and Voogt, J. A.: 1998, 'Modelling and Remote Sensing of the Urban Surface', in Proceedings of 2nd AMS Urban Environment Symposium.Google Scholar
  37. Sturrock, N. and Cole, R.: 1977, 'The Convective Heat Exchange at the External Surface of Buildings', Building Environ. 12, 207–214.Google Scholar
  38. Taha, H.: 1999, 'Modifying a Mesoscale Meteorological Model to Better Incorporate Urban Heat Storage: A Bulk-Parameterization Approach', J. Appl. Meteorol. 38, 466–473.Google Scholar
  39. Terjung, W. H. and O'Rourke, P. A.: 1980, 'Influences of Physical Structures on Urban Energy Budgets', Boundary-Layer Meteorol. 19, 421–439.Google Scholar
  40. Wieringa, J.: 1993, 'Representative Roughness Parameters for Homogeneous Terrain', Boundary-Layer Meteorol. 63, 323–363.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Valéry Masson
    • 1
  1. 1.Centre National de Recherches MétéorologiquesToulouseFrance

Personalised recommendations