Boundary-Layer Meteorology

, Volume 94, Issue 3, pp 495–515 | Cite as

Convective Profile Constants Revisited

  • A. A. Grachev
  • C. W. Fairall
  • E. F. Bradley
Article

Abstract

This paper examines the interpolation betweenBusinger–Dyer (Kansas-type) formulae,ϕu = (1 -1 6ζ )-1/4 andϕt = (1 - 16ζ )-1/2, and free convection forms. Based on matching constraints, the constants, au and at, in the convective flux-gradient relations, ϕu = (1 - auζ )-1/3 and ϕt = (1 - atζ )-1/3, are determined. It isshown that au and at cannot be completely independent if convective forms are blended with theKansas formulae. In other words, these relationships already carryinformation about au and at. This follows because the Kansas relations cover a wide stability range (up to ζ = - 2), which includes a lower part of the convective sublayer (about 0.1 < - ζ < 2). Thus, there is a subrange where both Kansas and convective formulae are valid. Matching Kansas formulae and free convection relations within thesubrange 0.1 < -ζ < 2 and independently smoothing ofthe blending function are used to determine au and at. The values au = 10 for velocity and at = 34for scalars (temperature and humidity) give a good fit. This new approacheliminates the need for additional independent model constants and yields a`smooth' blending between Kansas and free-convection profileforms in the COARE bulk algorithm.

Monin–Obukhov theory Flux-gradient relations Businger–Dyer formulae Free convection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas, E. L., Edson, J. B., Monahan, E. C., Rouault, M. P., and Smith, S. D.: 1995, 'The Spray Contribution to Net Evaporation from the Sea', Boundary-Layer Meteorol. 72, 3–52.Google Scholar
  2. Bradley, E. F. and Weller, R. A. (eds.): 1998, Fourth Workshop of the TOGA COARE Air-Sea Interaction (Flux) Working Group, 9–11 October, Woods Hole Oceanographic Institution, Woods Hole, MA, 62 pp. [TOGA COARE International Project Office, University Corporation for Atmospheric Research, Boulder, CO, U.S.A.].Google Scholar
  3. Brutsaert, W.: 1992, 'Stability Corrections Functions for the Mean Wind Speed and Temperature in the Unstable Surface Layer', Geophys. Res. Lett. 19, 469–472.Google Scholar
  4. Businger, J. A.: 1966, 'Transfer of Heat and Momentum in the Atmospheric Boundary Layer', in Proceedings of the Arctic Heat Budget and Atmospheric Circulation, RAND Corporation, Santa Monica, CA, pp. 305–332.Google Scholar
  5. Businger, J. A.: 1973, 'A Note on Free Convection', Boundary-Layer Meteorol. 4, 323–326.Google Scholar
  6. Businger, J. A.: 1988, 'A Note on the Businger-Dyer Profiles', Boundary-Layer Meteorol. 42, 145–151.Google Scholar
  7. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181–189.Google Scholar
  8. Carl, M. D., Tarbell, T. C., and Panofsky, H. A.: 1973, 'Profiles of Wind and Temperature from Towers over Homogeneous Terrain', J. Atmos. Sci. 30, 788–794.Google Scholar
  9. Delage, Y. and Girard, C.: 1992,'Stability Functions Correct at the Free Convection Limit and Consistent for Both the Surface and Ekman Layers', Boundary-Layer Meteorol. 58, 19–31.Google Scholar
  10. Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363–372.Google Scholar
  11. Dyer, A. J. and Bradley, E. F.: 1982, 'An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE', Boundary-Layer Meteorol. 22, 3–19.Google Scholar
  12. Fairall, C. W. and Grachev, A. A.: 1996, 'On the Sea-Surface Roughness Length under Free Convection Conditions', in Proceedings of the 8th AMS Conference on Air-Sea Interaction and Conference on the Global Ocean-Atmosphere-Land System (GOALS), 28 January-2 February 1996, Atlanta, Georgia, pp. J134-J138.Google Scholar
  13. Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: 1996a, 'Air-Sea Flux Parameterization in TOGA COARE', J. Geophys. Res. 101(C2), 3747–3764.Google Scholar
  14. Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: 1996b, 'Cool-Skin and Warm-layer Effects on Sea Surface Temperature', J. Geophys. Res. 101(C1),1295–1308.Google Scholar
  15. Fairall, C.W., White, A. B., Edson, J. B., and Hare, J. E.: 1997, 'Integrated Shipboard Measurements of the Marine Boundary Layer', J. Atmos. Oceanic Tech. 14, 338–359.Google Scholar
  16. Friehe, C. A., Burns, S. P., Khelif, D, and Song, X.: 1996, 'Meteorological and Flux Measurements from the NOAA WP3D Aircraft in TOGA COARE', in 8th AMS Conference on Air-Sea Interaction and Conference on the Global Ocean-Atmosphere-Land System (GOALS), 28 January-2 February 1996, Atlanta, Georgia, pp. J42-J45.Google Scholar
  17. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.Google Scholar
  18. Godfrey, J. S. and Beljaars, A. C. M.: 1991, 'On the Turbulent Fluxes of Buoyancy, Heat, and Moisture at the Air-Sea Interface at Low Wind Speeds', J. Geophys. Res. 96, 22043–22048.Google Scholar
  19. Grachev, A. A., Fairall, C. W., and Zilitinkevich, S. S.: 1997, 'Surface-Layer Scaling for the Convection-Induced Stress Regime', Boundary-Layer Meteorol. 83, 423–439.Google Scholar
  20. Grachev, A. A., Fairall, C. W., and Larsen, S. E.: 1998, 'On the Determination of the Neutral Drag Coefficient in the Convective Boundary Layer', Boundary-Layer Meteorol. 86, 257–278.Google Scholar
  21. Gurvich, A. S.: 1965, 'Vertical Temperature and Wind Velocity Profiles in the Atmospheric Surface layer', Izvestiya, Acad. Sci., USSR, Atmos. Oceanic Phys. 1, 31–36 (English edition).Google Scholar
  22. Högström, H.: 1988, 'Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation', Boundary-Layer Meteorol. 42, 55–78.Google Scholar
  23. Kader, B. A.: 1988, 'Three-Level Structure of an Unstably Stratified Atmospheric Surface Layer', Izvestiya, Acad. Sci., USSR, Atmos. Oceanic Phys. 24, 907–918 (English edition).Google Scholar
  24. Kader, B. A. and Perepelkin, V. G.: 1989, 'Effect of Unstable Stratification on the Wind Speed and Temperature Profiles in the Surface Layer', Izvestiya, Acad. Sci., USSR, Atmos. Oceanic Phys. 25, 583–588 (English edition).Google Scholar
  25. Kader, B. A. and Yaglom, A. M.: 1990, 'Mean Fields and FluctuationMoments in Unstably Stratified Turbulent Boundary Layers', J. Fluid Mech. 212, 637–662.Google Scholar
  26. Large, W. G., McWilliams, J. C., and Doney, S. C.: 1994, 'Ocean Vertical Mixing: A Review and a Model with a Nonlocal Boundary Layer Parameterization', Rev. Geophys. 32, 363–403.Google Scholar
  27. Mahrt, L. and Sun, J.: 1995, 'The Subgrid Velocity Scale in the Bulk Aerodynamic Relationship for Spatially Averaged Scalar Fluxes', Mon. Wea. Rev. 123, 3032–3041.Google Scholar
  28. Mahrt, L., Vickers, D., Howell J., Højstrup, J., Wilczak, J. M., Edson, J., and Hare, J.: 1996, 'Sea Surface Drag Coefficients in the Risø Air Sea Experiment', J. Geophys. Res. 101(C6), 14327–14335.Google Scholar
  29. Miller, M. J., Beljaars, A. C. M., and Palmer, T. N.: 1992, 'The Sensitivity of the ECMWF Model to the Parameterization of Evaporation from the Tropical Oceans', J. Climate 5, 418–434.Google Scholar
  30. Monin, A. S. and Obukhov, A. M.: 1954, 'Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere', Trudy Geofiz. Inst. Acad. Nauk SSSR 24(151), 163–187.Google Scholar
  31. Monin, A. S. and Yaglom, A. M.: 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, MA, 769 pp.Google Scholar
  32. Obukhov, A. M.: 1946, 'Turbulence in an Atmosphere with a Non-Uniform Temperature', Trudy Inst. Teoret. Geophys. Akad. Nauk SSSR 1, 95–115 (translation in: Boundary-Layer Meteorol. 2, 7–29, 1971).Google Scholar
  33. Panofsky, H. A.: 1963, 'Determination of Stress fromWind and Temperature Measurements', Quart. J. Roy. Meteorol. Soc. 89, 85–94.Google Scholar
  34. Panofsky, H. A., Blackadar, A. K., and McVehil, G. E.: 1960, 'The Diabatic Wind Profile', Quart. J. Roy. Meteorol. Soc. 86, 495–503.Google Scholar
  35. Paulson, C. A.: 1970, 'The Mathematical Representation ofWind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer', J. Appl. Meteorol. 9, 857–861.Google Scholar
  36. Petukhov, B. S. and Polyakov, A. F.: 1988, Heat Transfer in Turbulent Mixed Convection, Hemisphere Pub. Corp., New York, 216 pp.Google Scholar
  37. Priestley, C. H. B.: 1960, 'A Determination Hypothesis for the SuperadiabaticWind and Temperature Profiles', Quart. J. Roy. Meteorol. Soc. 86(368), 232–236.Google Scholar
  38. Schumann, U.: 1988, 'Minimum Friction Velocity and Heat Transfer in the Rough Surface Layer of a Convective Boundary Layer', Boundary-Layer Meteorol. 44, 311–326.Google Scholar
  39. Sorbjan, Z.: 1989, Structure of the Atmospheric Boundary Layer. Prentice Hall, New Jersey, 317 pp.Google Scholar
  40. Sugita, M., Hiyama, T., Endo, N., and Tian, S-F.: 1995, 'Flux Determination over a Smooth Surface under Strongly Unstable Conditions', Boundary-Layer Meteorol. 73, 145–158.Google Scholar
  41. Webster, P. J. and Lukas, R.: 1992, 'TOGA COARE: The Coupled Ocean Atmosphere Response Experiment, Bull. Amer. Meteorol. Soc. 73, 1377–1416.Google Scholar
  42. Zilitinkevich, S. S. and Chalikov, D. V.: 1968, 'Determining the Universal Wind-Velocity and Temperature Profiles in the Atmospheric Boundary Layer', Izvestiya, Acad. Sci., USSR, Atmos. Oceanic Phys. 4, 165–170 (English edition).Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • A. A. Grachev
    • 1
    • 2
  • C. W. Fairall
    • 2
  • E. F. Bradley
    • 3
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoU.S.A.
  2. 2.Environmental Technology LaboratoryNOAABoulderU.S.A.
  3. 3.CSIRO Land and WaterCanberraAustralia

Personalised recommendations