Antonie van Leeuwenhoek

, Volume 77, Issue 2, pp 103–116 | Cite as

Microbiology of petroleum reservoirs

  • Michel Magot
  • Bernard Ollivier
  • Bharat K.C. Patel


Although the importance of bacterial activities in oil reservoirs was recognized a long time ago, our knowledge of the nature and diversity of bacteria growing in these ecosystems is still poor, and their metabolic activities in situ largely ignored. This paper reviews our current knowledge about these bacteria and emphasises the importance of the petrochemical and geochemical characteristics in understanding their presence in such environments.

fermentative bacteria indigenous microflora iron-reducing bacteria methanogens oil fields sulphate-reducing bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins JP, Cornell LA & Tanner RS (1992) Microbial composition of carbonate petroleum reservoir fluids. Geomicrob. J. 10: 87–97.Google Scholar
  2. Aeckersberg F, Bak F & Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5–14.Google Scholar
  3. Amy PS & Haldeman DL (1997) Denizens of the deep. In: Amy PS & Haldeman DL (Ed) The Microbiology of the Terrestrial Deep Subsurface (pp 1–3). CRC Lewis, New York.Google Scholar
  4. Barth T (1991) Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with american reservoir formation waters. Appl. Geochem. 6: 1–15.Google Scholar
  5. Barth T & Riis M (1992) Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem. 19: 455–482.Google Scholar
  6. Bastin ES (1926) The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10: 1270–1299.Google Scholar
  7. Beeder J, Nilsen RK, Rosnes JT, Torsvik T & Lien T (1994) Archaeglobus fulgidus isolated from hot North Sea oil field water. Appl. Environ. Microbiol. 60: 1227–1231.Google Scholar
  8. Beeder J, Torsvik T & Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164: 331–336.Google Scholar
  9. Belyaev SS & Ivanov MV (1983) Bacterial methanogenesis in underground waters. Ecol. Bull. 35: 273–280.Google Scholar
  10. Belyaev SS, Wolkin R, Kenealy WR, De Niro MJ, Epstein S & Zeikus JG (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45: 691–697.Google Scholar
  11. Bernard FP, Connan J & Magot M(1992) Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. In: SPE 24811. Proceedings of the Society of Petroleum Engineers, vol. II (pp 467–475). Society of Petroleum Engineers, Inc., Richardson, TX.Google Scholar
  12. Bhupatiraju VK, Sharma PK, McInerney MJ, Knapp RM, Fowler K & Jenkins W (1991) Isolation and characterization of novel halophilic anaerobic bacteria from oil field brines. Dev. Petrol. Sci. 31: 131–143.Google Scholar
  13. Bhupathiraju VK, McInerney MJ & Knapp RM (1993) Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19–34.Google Scholar
  14. Bhupatiraju VK, Oren A, Sharma PK, Tanner RS, Woese CR & McInerney MJ (1994) Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44: 565–572.Google Scholar
  15. Borzenkov IA, Belyaev SS, Miller YM, Davidova IA & Ivanov MV (1997) Methanogenesis in the highly mineralized stratal watersm of the Bondyuzhskoe oil field. Microbiology (Engl. Tr.) 66: 104–110.Google Scholar
  16. Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J & Garcia JL (1994) Isolation and characterization of Halothermothrix orenii gen. nov. sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44: 534–540.Google Scholar
  17. Cayol JL, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD & Garcia JL (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45: 783–789.Google Scholar
  18. Christensen B, Torsvik T & Lien T (1992) Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Seaoil field waters. Appl. Environ. Microbiol. 58: 1244–1248.Google Scholar
  19. Connan J, Lacrampe-Couloume G & Magot M (1996) Origin of gases in reservoirs. In: Dolenc A (Ed) Proceedings of the 1995 International Gas Research Conference. Government Institutes Inc., Rockville, MD.Google Scholar
  20. Cord-Ruwich R, Kleinitz W & Widdel F (1987) Sulphate-reducing bacteria and their activities in oil production. J. Petrol. Technol. 1: 97–106.Google Scholar
  21. Crolet JL & Magot M (1996) Non-SRB sulfidogenic bacteria in oilfield production facilities. Mat. Perf., March 1996: 60–64.Google Scholar
  22. Davey ME, Wood WA, Key R, Nakamura K & Stahl DA (1993). Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line. System.Appl. Microbiol. 16: 191–200.Google Scholar
  23. Davidova IA, Harmsen HJM, Stams AJM, Belyaev SS & Zehnder AJB (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to Methanohalophilus genus. Antonie van Leeuwenhoek 71: 313–318.Google Scholar
  24. Davydova-Charakhch'yan IA, Kuznetsova VG, Mityushina LL & Belyaev SS (1992a) Methane-forming bacilli from oil fields of Tataria and western Siberia. Microbiology (Engl. Tr.) 61: 299–305.Google Scholar
  25. Davydova-Charakhch'yan IA, Mileeva AN, Mityushina LL & Belyaev SS (1992b) Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (Engl. Tr.) 61: 306–315.Google Scholar
  26. Fardeau ML, Cayol JL, Magot M & Ollivier B (1993) H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113: 327–332.Google Scholar
  27. Fardeau ML, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F & Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47: 1013–1019.Google Scholar
  28. Faudon C, Fardeau ML, Heim J, Patel BKC, Magot M & Ollivier B (1995) Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr.Microbiol. 31: 152–157.Google Scholar
  29. Fisher JBF (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51: 2459–2468.Google Scholar
  30. Galushko AS & Rozanova EP (1991) Desulfobacterium cetonicum. sp. nov: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology (Engl. Tr.) 60: 102–107.Google Scholar
  31. Gevertz D, Paterek JR, Davey ME & Wood WA (1991) Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31: 115–129.Google Scholar
  32. Grassia GS, McLean KM, Glénat P, Bauld J & Sheehy AJ (1996). A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol.Ecol. 21: 47–58.Google Scholar
  33. Grbic-Galic D (1990) Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments. In: Bollag JM & Stotzky G (Ed) Soil Biogeochemistry (pp 117–189). Marcel Dekker, New York.Google Scholar
  34. Greene AC, Patel BKC & Sheehy A (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505–509.Google Scholar
  35. Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosello-Mora R & Widdel F (1999) Anaerobic oxidation of o-xylene, m xylene, and homologous alkylbenzenes by new types of sulfatereducingbacteria. Appl. Environ. Microbiol. 65: 999–1004.Google Scholar
  36. Huu NB, Denner EBM, Ha DTC, Wanner G & Stan-Lotter H (1999). Marinobacter aequaeolei sp. nov., a halophilic bacterium isolated from a vietnamese oil-producing well. Int. J. Syst. Bacteriol. 49: 367–375.Google Scholar
  37. Ivanov MV, Belyaev SS, Zyakun AM, Bondars V & Laurinivicius K (1983) Microbiological methane formation in oil field development. Geokhimiya 11: 1647–1654.Google Scholar
  38. Jeanthon C, Reysenbach AL, L'Haridon S, Gambacorta A, Pace NR, Glénat P & Prieur D (1995) Thermotoga subterranea sp.nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164: 91–97.Google Scholar
  39. Krekeler D, Sigalevich P, Teske P, Cypionka H & Cohen Y (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov.Arch. Microbiol. 167: 369–375.Google Scholar
  40. Krumholz L, Caldwell ME & Suflita JM (1996) Biodegradation of 'BTEX' hydrocarbons under anaerobic conditions. In: Crawford R & Crawford D (Ed) Bioremediation: Principles and Applications (pp 61–99). Cambridge University Press, Cambridge.Google Scholar
  41. L'Haridon S, Reysenbach AL, Glénat P, Prieur D & Jeanthon P (1995). Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223–224.Google Scholar
  42. Lien T & Beeder J (1997) Desulfobacter vibrioformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst.Bacteriol. 47: 1124–1128.Google Scholar
  43. Lien T, Madsen M, Steen IH & Gjerdevik K (1998a) Desulfobulbus rhabdoformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48: 469–474.Google Scholar
  44. Lien T, Madsen M, Rainey FA & Birkeland N-K (1998b) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48: 469–474.Google Scholar
  45. Leu J-Y, McGovern-Traa, Porter AJR & Hamilton WA (1998) Identification and phylogenetic analysis of thermophilic sulfatereducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4: 165–174.Google Scholar
  46. Magot M (1996) Similar bacteria in remote oil fields. Nature 379: 681.Google Scholar
  47. Magot M, Caumette P, Desperrier JM, Matheron R, Dauga C, Grimont F & Carreau L (1992) Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from oil-producing well. Int. J. Syst. Bacteriol. 42: 398–403.Google Scholar
  48. Magot M, Hurtevent C & Crolet JL (1993) Reservoir souring and well souring. In: Costa JM & Mercer AD (Eds.) Progress in the Understanding and Prevention of Corrosion (pp 573–575). The Institute of Materials, London, UK.Google Scholar
  49. Magot M, Fardeau ML, Arnauld O, Lanau C, Ollivier B, Thomas P & Patel BKC (1997a) Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol. Lett. 155: 185–191.Google Scholar
  50. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau ML, Thomas P, Crolet JL & Garcia JL (1997b) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47: 818–824.Google Scholar
  51. Matz AA, Borisov AY, Mamedov YG & Ibatulin RR (1992) Commercial (pilot) test of microbial enhanced oil recovery. Proceedings of the 8th SPE/DOE Symposium on Enhanced Oil Recovery. SPE/DOE paper 24208. Society of Petroleum Engineers, Inc., Richardson, TX.Google Scholar
  52. McInnerney MJ & Sublette KL (1997) Petroleum microbiology: biofouling, souring, and improved oil recovery. In: Hurst CJ, Knudsen GR, McInnerney MJ, Stetzenbach LD & Walter MV (Eds.) Manual of Environmental Microbiology (pp 600–607). ASM Press, Washington, DC.Google Scholar
  53. Milekhina EI, Borzenkov IA, Zvyagintseva IS, Kostrikina NA & Belyaev SS (1998) Ecological and physiological characterization of aerobic eubacteria from oil fields of Tatarstan. Microbiology (Engl. Tr.) 67: 170–175.Google Scholar
  54. Moser DP & Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62: 2100–2105.Google Scholar
  55. Nazina TN & Rozanova EP (1978) Thermophilic sulfate-reducing bacteria from oil strata. Microbiology (Engl. Tr.) 47: 142–148.Google Scholar
  56. Nazina TN, Ivanova AE Kanchaveli LP & Rozanova EP (1988) A new thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (Engl. Tr.) 57: 823–827.Google Scholar
  57. Nazina TN, Ivanova AE, Mityushina LL & Belyaev SS (1993) Thermophilic hydrocarbon-oxidizing bacteria from oil strata. Microbiology (Engl. Tr.) 62: 359–365.Google Scholar
  58. Nazina TN, Ivanova AE, Golubeva OV, Ibatullin RR, Belyaev SS & Ivanov MV (1995) Occurrence of sulfate-and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Microbiology (Engl. Tr.) 64: 203–208.Google Scholar
  59. Nealson KH & Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311–343.Google Scholar
  60. Ng TK, Weimer PJ & Gawel LJ (1989) Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura county, California. Geomicrobiol. J. 7: 185–192.Google Scholar
  61. Nga DP, Cam Ha DT, Hien LT & Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from vietnamese oil fields. Anaerobe 2: 385–392.Google Scholar
  62. Ni S & Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae H1350, from an oil well. Int. J. Syst. Bacteriol. 41: 410–416.Google Scholar
  63. Ni S, Woese CR, Aldrich H.C. & Boone DR (1994) Transfer of Methanolobus siciliae to the genus Methanosarcina naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int. J. Syst. Bacteriol. 44: 357–359.Google Scholar
  64. Nilsen RK & Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol. 62: 728–731.Google Scholar
  65. Nilsen RK, Beeder J, Thostenson T & Torsvik T (1996a) Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62: 1793–1798.Google Scholar
  66. Nilsen RK, Torsvik T & Lien T (1996b) Desulfotomaculum thermocisternum sp. nov., a sulfate-reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46: 397–402.Google Scholar
  67. Obraztsova AY, Tsyban VE, Laurina Vichus KS, Bezrukova LV & Belyaev SS (1987) Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology (Engl. Tr.) 56: 807–812.Google Scholar
  68. Obraztsova AY, Shipin OV, Bezrukova LV & Belyaev SS (1988) Properties of the coccoid methylotrophic methanogen. Microbiology (Engl. Tr.) 56: 523–527.Google Scholar
  69. Ollivier B, Caumette P, Garcia JL & Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.Google Scholar
  70. Ollivier B, Cayol JL, Patel BKC, Magot M, Fardeau ML & Garcia JL (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil producing well. FEMS Microbiol. Lett. 147: 51–56.Google Scholar
  71. Ollivier B, Fardeau ML, Cayol JL, Magot M, Patel BKC, Prensier G & Garcia JL (1998) Characterization of Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48: 821–828.Google Scholar
  72. Oremland & King (1989) Methanogenesis in hypersaline environments. In: Cohen Y & Rosenberg (Ed) Microbial Mats: Physiological Ecology of Benthic Microbial Communities (pp 180–190).American Society for Microbiology, Washington, DC.Google Scholar
  73. Patel BKC, Andrews KT, Ollivier B, Mah RA & Garcia JL (1995) Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA genes. FEMS Microbiol. Lett 134: 115–119.Google Scholar
  74. Philippi GT (1977) On the depth, time, and mechanism of origin of the heavy to medium gravity naphtenic crude oil. Geochim. Cosmochim. Acta 41: 33–52.Google Scholar
  75. Premuzic E & Woodhead A (1993) Microbial enhancement of oil recovery-Recent advances. Proceedings of the 1992 Conference on Microbial Enhanced Oil Recovery. Elsevier, Amsterdam.Google Scholar
  76. Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP & Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov., and further taxonomic rearrangements at the genus and species level. Anaerobe 1: 185–199.Google Scholar
  77. Ravot G, Magot M, Fardeau ML, Patel BKC, Prensier G, Egan A, Garcia JL & Ollivier B (1995a) Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45: 308–314.Google Scholar
  78. Ravot G, Ollivier B, MagotM, Patel BKC, Crolet JL, Fardeau ML & Garcia JL (1995b) Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl. Environ. Microbiol. 61: 2053–2055.Google Scholar
  79. Ravot G, Ollivier B, Fardeau ML, Patel BKC, Andrews KT, Magot M & Garcia JL (1996) L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62: 2657–2659.Google Scholar
  80. Ravot G, Magot M, Ollivier B, Patel BKC, Ageron E, Grimont PAD, Thomas P & Garcia JL (1997) Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate-and sulfur-reducing bacterium from an african oil field. FEMS Microbiol. Lett. 147: 81–88.Google Scholar
  81. Redburn AC & Patel BKC (1994) Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 115: 33–38.Google Scholar
  82. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP & Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85–89.Google Scholar
  83. Rees GN, Patel BKC, Grassia GS & Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int. J. Syst. Bacteriol. 47: 150–154.Google Scholar
  84. Rengpipat S, Langworthy TA & Zeikus JG (1988) Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environment. Syst. Appl. Microbiol. 11: 28–35.Google Scholar
  85. Rosnes JT, Torsvik T & Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57: 2302–2307.Google Scholar
  86. Rozanova EP & Khudyakova AI (1974) A new nonspore-forming thermophilic sulfate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology (Engl. Tr.) 43: 1069–1075.Google Scholar
  87. Rozanova EP & Nazina TN (1979). Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata. Microbiology (Engl. Tr.) 48: 907–911.Google Scholar
  88. Rozanova EP & Pivovarova TA. (1988) Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Microbiology (Engl. Tr.) 57: 102–106.Google Scholar
  89. Rozanova EP, Nazina TN & Galushko AS (1988). Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium aspheronum gen. nov. sp. nov. Microbiology (Engl. Tr.) 57: 634–641.Google Scholar
  90. Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW & Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.Google Scholar
  91. Semple KM & Westlake DWS (1987) Characterization of ironreducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Micobiol. 33: 366–371.Google Scholar
  92. Stetter KO, Hoffmann A & Huber R (1993a) Microorganisms adapted to high temperature environments. In: Guerrero R & Pedros-Alio C (Ed) Trends in Microbial Ecology (pp 25–28).Spanish Society for Microbiology.Google Scholar
  93. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H & Vance I (1993b) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745.Google Scholar
  94. Tardy-Jacquenod C, Caumette P, Matheron R, Lanau C, Arnauld O & Magot M (1996a) Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42: 259–266.Google Scholar
  95. Tardy-Jacquenod C, Magot M, Laigret F, Kaghad M, Patel BKC, Guezennec J, Matheron R & Caumette P (1996b) Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfatereducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710–715.Google Scholar
  96. Tardy-Jacquenod C, Magot M, Patel BKC, Matheron R & Caumette P (1998) Desulfotomaculum halophilum sp. nov., a new halophilic, spore-forming, sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48: 333–338.Google Scholar
  97. Telang AJ, Ebert S Foght JM, Westlake DWS, Jenneman GE, Gevertz D & Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63: 1785–1793.Google Scholar
  98. Voordouw G, Voordouw JK, Jack JK, Foght J, Fedorak PM & Westlake DW (1992) Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Appl. Environ. Microbiol. 58: 3542–3552.Google Scholar
  99. Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y & Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623–1629.Google Scholar
  100. Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K & Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129: 1159–1169.Google Scholar
  101. Zvyagintseva IS, Belyaev SS, Borzenkov IA, Kostrikina NA, Milekhina EI & Ivanov MV (1995) Halophilic archaebacteria from the Kalamkass oil field. Microbiology (Engl. Tr.) 64: 83–87.Google Scholar
  102. Zvyagintseva IS, Kostrikina NA & Belyaev SS (1998) Detection of halophilic in a upper devonian oil field in Tatarstan. Microbiology (Engl. Tr.) 67: 688–691.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Michel Magot
    • 1
  • Bernard Ollivier
    • 2
  • Bharat K.C. Patel
    • 3
  1. 1.SANOFI RechercheCentre de LabègeLabègeFrance Author for correspondence)
  2. 2.Laboratoire ORSTOM de Microbiologie des AnaérobiesUniversité de Provence, CESB-ESIL, Case 925Marseille Cedex 9France
  3. 3.Faculty of Science and TechnologyGriffith UniversityBrisbaneAustralia

Personalised recommendations