Compositio Mathematica

, Volume 124, Issue 1, pp 57–63 | Cite as

Analytic Variation of p-adic Abelian Integrals

  • Roland Dreier
Article
  • 4 Downloads

Abstract

In Ann. of Math.121 (1985), 111–168, Coleman defines p-adic Abelian integrals on curves. Given a family of curves X/S, a differential ω and two sections s and t, one can define a function λω on S by λω(P)=\({\int {}}\)s(P)t(P)ωP. In this paper, we prove that λω is locally analytic on S.

p-adic Abelian integrals algebraic families of curves locally analytic variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, R. F.: Torsion points on curves and p-adic Abelian integrals, Ann. of Math. 121 (1985), 111–168.Google Scholar
  2. 2.
    Faltings, G.: F-isocrystals on open varieties: Results and conjectures, In: The Grothendieck Festschrift, Vol. II, Birkhäuser, Boston, 1990, pp. 219–248.Google Scholar
  3. 3.
    Katz, N. M.: Travaux de Dwork, In: Séminaire Bourbaki, 24ème année, Exp. No. 409. Lecture Notes in Math. 317, Springer-Verlag, New York, 1972, pp. 167–200.Google Scholar
  4. 4.
    Zarhin, Y. G.: p-adic Abelian integrals and commutative Lie groups, J. Math. Sci. 81(3), 1996, 2744–2750. Algebraic Geom. 4.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Roland Dreier
    • 1
  1. 1.Department of MathematicsOklahoma State UniversityStillwaterU.S.A.

Personalised recommendations