Antonie van Leeuwenhoek

, Volume 77, Issue 3, pp 223–228 | Cite as

Saccharomyces bulderi sp. nov., a yeast that ferments gluconolactone

  • Wouter J. Middelhoven
  • Cletus P. Kurtzman
  • Ann Vaughan-Martini
Article

Abstract

An unknown yeast species was isolated from maize silage and was determined to be novel on the basis of morphological and physiological characteristics, nucleotide sequence of domain D1/D2 of LSU rDNA and from its electrophoretic karyotype. The name for the proposed new species is Saccharomyces bulderi Middelhoven, Kurtzman et Vaughan-Martini (type strain CBS 8638, NRRL Y-27203, DBVPG 7127). S. bulderi is closely related to S. barnettii and S. exiguus from which it can be distinguished by having a double vitamin requirement of biotin and thiamine and by no or slow aerobic growth on raffinose, a sugar that on the contrary is fermented rapidly. Gluconolactone is rapidly fermented with ethanol, glycerol and carbon dioxide being the main products.

fermentation gluconolactone raffinose Saccharomyces bulderi yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulder CJEA (1963) On respiratory deficiency in yeasts. PhD Thesis, DelftGoogle Scholar
  2. Bulder CJEA (1964) Lethality of the petite mutation in petite negative yeasts. Antonie van Leeuwenhoek 30: 442–454PubMedGoogle Scholar
  3. Bulder CJEA (1966) Lethality in respiratory deficiency and utilization of fermentation energy in petite negative yeasts. Arch f Mikrobiol. 53: 189–194CrossRefGoogle Scholar
  4. Kluyver AJ (1914) Biochemische suikerbepalingen. PhD Thesis, DelftGoogle Scholar
  5. Kurtzman CP & Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371PubMedGoogle Scholar
  6. Marmur J & Doty P (1962) Determination of the base composition of desoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 5: 109–118PubMedGoogle Scholar
  7. Middelhoven WJ (1997) Assimilation of organic acids: the pH as determining factor. YEAST, a newsletter for persons interested in yeast 46(II): 19–20Google Scholar
  8. Middelhoven WJ & Franzen MM (1986) The yeast flora of ensiled whole-crop maize. J Sci Food Agric. 37: 855–861Google Scholar
  9. Vaughan-Martini A (1995) Saccharomyces barnetti and Saccharomyces spencerorum: two new species of Saccharomyces sensu lato (van der Walt). Antonie van Leeuwenhoek 68: 111–118PubMedGoogle Scholar
  10. Vaughan-Martini A & Martini A (1998) Saccharomyces Meyen ex Reess. In: Kurtzman CP & Fell JW (Eds) The Yeasts, a taxonomic study, 4th edn. (pp 358–371). Elsevier, AmsterdamGoogle Scholar
  11. van derWalt JP & Yarrow D (1984) Methods for the isolation, maintenance, classification and identification of yeasts. In: Kreger-van Rij NJW (Ed) The Yeasts, a taxonomic study, 3rd edn. (pp 45–104). Elsevier Science Publishers, AmsterdamGoogle Scholar
  12. van Hoek P, van Dijken JP & Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker's yeast. Appl Environm Microbiol. 64: 4226–4233Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Wouter J. Middelhoven
    • 1
  • Cletus P. Kurtzman
    • 2
  • Ann Vaughan-Martini
    • 3
  1. 1.Laboratorium voor MicrobiologieWageningen Agricultural UniversityEJ WageningenThe Netherlands
  2. 2.Microbial Properties Research UnitNational Center for Agricultural Utilization ResearchPeoriaUSA
  3. 3.Dipartimento di Biologia VegetaleUniversità di PerugiaPerugiaItaly

Personalised recommendations