Advertisement

Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 159–184 | Cite as

The biosynthesis and functionality of the cell-wall of lactic acid bacteria

  • Jean DelcourEmail author
  • Thierry Ferain
  • Marie Deghorain
  • Emmanuelle Palumbo
  • Pascal Hols
Article

Abstract

The cell wall of lactic acid bacteria has the typical Gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attribut es of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids.

autolysin cell wall D-alanine D-serine lactic acid bacteria peptidoglycan polysaccharide S-layer teichoic acid vancomycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlerbeth I, Ahrné S, Johansson ML, Molin G, Hanson LA & Wold AE (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl. Environ. Microbiol. 62: 2244-2251Google Scholar
  2. Allen CM (1985) Purification and characterization of undecaprenyl-pyrophosphate synthetase. Methods Enzymol. 110: 281-299Google Scholar
  3. Adam A, Petit JF, Lefrancier P & Lederer E (1981) Muramyl peptides. Mol. Cell. Biochem. 41: 27-47Google Scholar
  4. Allen NE, Hobbs JN Jr, Richardson JM & Riggin RM (1992) Biosynthesis of modified peptidoglycan precursors by vancomycin-resistant Enterococcus faecium. FEMS Microbiol. Lett. 98: 109-116Google Scholar
  5. Amano K, Hayashi H, Araki Y & Ito E (1977) The action of lysozyme on peptidoglycan with N-unsubstituted glucosamine residues. Isolation of glycan fragments and their susceptibility to lysozyme. Eur. J. Biochem. 76: 299-307Google Scholar
  6. Aono R and Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem. J. 15: 933-936Google Scholar
  7. Apfel CM, Takacs B, Fountoulakis M, Stieger M & Keck W (1999) Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression and characterization of the essential uppS gene. J. Bacteriol. 181: 483-492Google Scholar
  8. Araki Y, Oba S and Ito E (1980) Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan. J. Biochem. Tokyo 88: 469-479Google Scholar
  9. Archibald AR (1976) Cell wall assembly in Bacillus subtilis: development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid. J. Bacteriol. 127: 956-960Google Scholar
  10. Archibald AR and Baddiley J (1986) The teichoic acids. In: Wolfrom ML & Timpson RS, (Eds) Advances in Carbohydrate Chemistry. (pp 325-375). Academic Press, New YorkGoogle Scholar
  11. Archibald AR, Hancock IC & Harwood CR (1993) Cell wall structure, synthesis and turnover. In: Hoch JA & Losick R (Eds). (pp 381-410) Bacillus subtilis and other Gram-Positive Bacteria American Society for Microbiology, Washington, DCGoogle Scholar
  12. Armstrong JJ, Baddiley J, Buchanan JG, Carss B & Greenberg GR (1958) Isolation and structure of ribitol phosphate derivatives (teichoic acids) from bacterial cell walls. J. Chem. Soc. 4344-4354Google Scholar
  13. Arthur M, Molinas C, Bugg TDH, Wright GD, Walsh CT & Courvalin P (1992) Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 36: 867-869Google Scholar
  14. Arthur M, Molinas C, Depardieu F & Courvalin P (1993) Characterization of TN1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175: 117-127Google Scholar
  15. Arthur M, Reynolds P & Courvalin P (1996) Glycopeptide resistance in enterococci. Trends Microbiol 4: 401-407Google Scholar
  16. Ayala JA, Garrido T, de Pedro MA & Vicente M (1994) Molecular biology of bacterial septation. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall. Elsevier, Amsterdam, pp 73-101Google Scholar
  17. Baddiley J 1989. Bacterial cell walls and membranes. Discovery of the teichoic acids. BioEssays 10: 207-210Google Scholar
  18. Bahl H, Scholz H, Bayan N, Chami M, Leblon G & Gulik-Krzywicki T et al. (1997) Molecular biology of S-layers. FEMS Microbiol. Rev. 20: 47-98Google Scholar
  19. Begg KJ, Tagasuga A, Edwards DH, Dewar SJ, Spratt BG, Adachi H, Ohta T, Matsuzawa H & Donachie WD (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172: 6697-6703Google Scholar
  20. Béliveau C, Potvin C, Trudel J, Asselin A & Bellemare G (1991) Cloning, sequencing and expression in Escherichia coli of a Streptococcus faecalis autolysin. J. Bacteriol. 173: 5619-5623Google Scholar
  21. Beveridge T, Pouwels PH, Sara M, Kotiranta A, Lounatmaa K, Kari K et al. (1997) Functions of S-layers. FEMS Microbiol. Rev. 20: 99-149Google Scholar
  22. Bhakdi S, Klonisch P, Nuber P & Fischer W (1991) Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59: 4614-4620Google Scholar
  23. Bidnenko E, Mercier C, Tremblay J, Tailliez P & Kulakauskas S (1998) Estimation of the state of the bacterial cell wall by fluorescent in situ hybridization. Appl. Environ. Microbiol. 64: 3059-3062Google Scholar
  24. Bierbaum G and Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169: 5452-5458Google Scholar
  25. Billot-Klein D, Gutmann L, Sable S, Guittet E & van Heijenoort J (1994) Modification of peptidoglycan precursor is a common feature of the low-level vancomycin-resistant VanB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176: 2398-2405Google Scholar
  26. Billot-Klein D, Shlaes D, Bryant D, van Heijenoort J & Gutmann L (1996) Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type. Biochem. J. 313: 711-715Google Scholar
  27. Billot-Klein D, Legrand R, School B, van Heijenoort J & Gutmann L (1997) Peptidoglycan structure of Lactobacillus casei, a species highly resistant to glycopeptide antibiotics. J. Bacteriol. 179: 6208-6212Google Scholar
  28. Blackman SA, Smith TJ & Foster SJ (1998) The role of autolysins during vegetative groth of Bacillus subtilis 168. Microbiology 144: 73-82Google Scholar
  29. Boot HJ and Pouwels PH (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21: 1117-1123Google Scholar
  30. Boot HJ, Kolen CPAM, van Noort JM & Pouwels PH (1993) S-layer protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175: 6089-6096Google Scholar
  31. Boot HJ, Kolen CPAM & Pouwels PH (1995) Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 177: 7222-7230Google Scholar
  32. Boot HJ, Kolen CPAM & Pouwels PH (1996a) Interchange of the active and silent S-layer protein genes of Lactobacillus acidophilus by inversion of the chromosomal slp segment. Mol. Microbiol. 21: 799-809Google Scholar
  33. Boot HJ, Kolen CPAM, Andreadaki FJ, Leer RJ & Pouwels PH (1996b) The Lactobacillus acidophilus S-layer protein gene expression site comprises two consensus promoter sequences, one of which directs transcription of stable mRNA. J. Bacteriol. 178: 5388-5394Google Scholar
  34. Bottazzi V (1988) An introduction to rod-shaped lactic-acid bacteria. Biochimie 70: 303-315Google Scholar
  35. Briehl M, Pooley HM & Karamata D (1989) Mutants of Bacillus subtilis 168 thermosensitive for growth and wall teichoic acid synthesis. J. Gen. Microbiol. 135: 1325-1334Google Scholar
  36. Bugg DH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P & Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance protein VanH and VanA. Biochemistry 30: 10408-10415Google Scholar
  37. Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G and Haandrikman AJ (1995) Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J. Bacteriol. 177: 1554-1563Google Scholar
  38. Buist G, Karsens H, Nauta A, van Sinderen D, Venema G and Kok J (1997) Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl. Environ. Microbiol. 63: 2722-2728Google Scholar
  39. Buist G, Venema G & Kok J (1998) Autolysis of Lactococcus lactis is influenced by proteolysis. J. Bacteriol. 180: 5947-5953Google Scholar
  40. Callegari ML, Riboli B, Sanders JW, Cocconcelli PS, Kok J, Venema G & Morelli L (1998) The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression. Microbiology 144: 719-726Google Scholar
  41. Carias LL, Rudin SD, Donskey CJ & Rice LB (1998) Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enteroccoccus faecium isolate. J. Bacteriol. 180: 4426-4434Google Scholar
  42. Cassels FJ and London J (1989) Isolation of a coaggregation-inhibiting cell wall polysaccharide from Streptococcus sanguis H1. J. Bacteriol. 171: 4019-4025Google Scholar
  43. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130Google Scholar
  44. Chapman G and Hillier J (1953) Electron microscopy of ultra-thin sections of bacteria. I. Cellular division in Bacillus cereus. J. Bacteriol. 66: 362-373Google Scholar
  45. Chapot-Chartier MP (1996) Les autolysines des bactéries lactiques. Lait 76: 91-109Google Scholar
  46. Childs WC III, Taron DJ & Neuhaus FC (1985) Biosynthesis of D-alanyl-lipoteichoic acid by Lactobacillus casei: interchain transacylation of D-alanyl ester residues. J. Bacteriol. 162: 1191-1195Google Scholar
  47. Chu CP, Kariyama R, Daneo-Moore L & Shockman GD (1992) Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. J. Bacteriol. 174: 1619-1625Google Scholar
  48. Clarke AJ & Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can. J. Microbiol. 38: 85-91Google Scholar
  49. Coyette J and Ghuysen JM (1970) Structure of the walls of Lactobacillus acidophilus strain 63 AM Gasser. Biochemistry 9: 2935-2943Google Scholar
  50. Crow VL, Coolbear T, Gopal PK, Martley FG, McKay LL & Riepe H (1995) The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 5: 855-875Google Scholar
  51. de Vos WM, Underwood HM & Davies FL (1984) Plasmid-encoded bacteriophage resistance in Streptococcus cremoris SK11. FEMS Microbiol. Lett. 23: 175-179Google Scholar
  52. Demchick P & Koch AL (1996) The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178: 768-773Google Scholar
  53. Dijkstra A & Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J. Bacteriol. 178: 5555-5562Google Scholar
  54. Douglas LJ & Wolin MJ (1971) Cell wall polymers and phage lysis of Lactobacillus plantarum. Biochemistry 10: 1551-1555Google Scholar
  55. Doyle RJ & Koch AL (1987) The functions of autolysins in the growth and division of Bacillus subtilis. CRC Crit. Rev. Microbiol. 15: 169-222Google Scholar
  56. Duez C, Thamm I, Sapunaric F, Coyette J & Ghuysen JM (1998) The division and cell wall gene cluster of Enterococcus hirae S185. DNA Sequence 9: 149-161Google Scholar
  57. Duwat P, Cochu A, Ehrlich SD & Grass A (1997) Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition. J. Bacteriol. 179: 4473-4479Google Scholar
  58. El Kharroubi A, Jacques P, Piras G, Van Beeumen J, Coyette J & Ghuysen JM (1991) The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463-469Google Scholar
  59. Fan DP (1970) Autolysin(s) of Bacillus subtilis as dechaining enzyme. J. Bacteriol. 103: 494-499Google Scholar
  60. Ferain T, Hobbs JN, Richardson J, Bernard N, Garmyn D, Hols P, Allen NE & Delcour J (1996) Knockout of the two ldh genes has a major impact on peptidoglycan precursor synthesis in Lactobacillus plantarum. J. Bacteriol. 178: 5431-5437Google Scholar
  61. Ferrari E, Henner DJ & Yang MY (1985) Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Biotechnology 3: 1003-1007Google Scholar
  62. Fischer W (1981) Glycerophosphoglycolipids: presumptive biosynthetic precursors of lipoteichoic acids. In Shockman GD & Wacken AJ, (Eds). Chemistry and Biological Activities of Bacterial Surface Amphiphiles (pp 209-228). Academic Press, New YorkGoogle Scholar
  63. Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29: 233-302Google Scholar
  64. Fischer W (1990) Bacterial phosphoglycolipids and lipoteichoic acids. In Kates M (Ed.) Handbook of lipid research: glycolipids, phospholipids and sulfoglycolipids (pp 123-234). Plenum Press, New YorkGoogle Scholar
  65. Fischer W (1994) Lipoteichoic acids and lipoglycans. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall. (pp 199-215). Elsevier, AmsterdamGoogle Scholar
  66. Fischer W, Rösel P & Koch HU (1981) Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus. J. Bacteriol. 146: 467-475Google Scholar
  67. Fotheringham IG, Bledig SA & Taylor PP (1998) Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180: 4319-4323Google Scholar
  68. Garcia E and Lopez R (1997) Molecular biology of the capsular genes of Streptococcus pneumoniae. FEMS Microbiol. Lett. 149: 1-10Google Scholar
  69. Gasson MJ (1996) Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek 70: 147-159Google Scholar
  70. Ghuysen JM (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32: 425-464Google Scholar
  71. Ghuysen JM (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37-667Google Scholar
  72. Giesbrecht P, Kersten T, Maidhof H & Wecke J (1998) Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62: 1371-1414Google Scholar
  73. Glaser P, Kunst F, Arnaud M, Coudart MP, Gonzales W, Hullo MF et al. (1993) Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10: 371-384Google Scholar
  74. Goffin C & Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079-1093Google Scholar
  75. Gopal PK & Crow VL (1993) Characterization of loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398. Appl. Environ. Microbiol. 59: 3177-3182Google Scholar
  76. Graham LL & Beveridge TJ (1990) Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J. Bacteriol. 172: 2141-2149Google Scholar
  77. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A & Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65: 1071-1077Google Scholar
  78. Grant WD (1979) Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis. J. Bacteriol. 137: 35-43Google Scholar
  79. Graumann P, Wendrich TM, Weber MHW, Schröder K & Marahiel MA (1997) A family of cold shcock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25: 741-756Google Scholar
  80. Green CJ & Void BS (1993) Staphylococcus aureus has clustered tRNA genes. J. Bacteriol. 175: 5091-5096Google Scholar
  81. Greene JD & Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494Google Scholar
  82. Hakenbeck R (1994) Resistance to glycopeptide antibiotics. In Ghuysen JM & Hakenbeck R (Eds). Bacterial Cell Wall, (pp 535-558). Elsevier, AmsterdamGoogle Scholar
  83. Hall EA & Knox KW (1965) Properties of the polysaccharide and mucopeptide components of the cell wall of Lactobacillus casei. Biochem. J. 96: 310-318Google Scholar
  84. Hamada S, Torii M & Kotani S et al. (1978) Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a culture liquor of Streptomyces globisporus 1829. Arch. Oral Biol. 23: 543-549Google Scholar
  85. Hamann L, El-Samalouti V, Ulme AJ, Flad HD & Rietschel ET (1998) Components of gut bacteria as immunomodulators. Int. J. Food Microbiol. 41: 141-154Google Scholar
  86. Handwerger S, Pucci MJ, Volk KJ, Liu J & Lee MS (1992) The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J. Bacteriol. 174: 5982-5984Google Scholar
  87. Handwerger S, Pucci MJ, Volk KJ, Liu J & Lee MS (1994) Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J. Bacteriol. 176: 260-264Google Scholar
  88. Healy VL, Park IS & Walsh CT (1998) Active-site mutants of the VanC2 D-alanyl-D-serine ligase, characteristic of one vancomycin-resistant bacterial phenotype, revert towards wild-type D-alanyl-D-alanine ligases. Chem. Biol. 5: 197-207Google Scholar
  89. Heaton MP & Neuhaus FC (1993) The significance of secondary cell wall polymers in gram-positive organisms: Lactobacillus casei as a model system for the study of D-alanyl-lipoteichoic acid biosynthesis and function. In: Foo EL et al. (Eds) The Lactic Acid Bacteria (pp 89-98). Horizon Scientific Press, NorfolkGoogle Scholar
  90. Heaton MP, Johnston RB & Thompson TL (1988) Controlled lysis of bacterial cells utilizing mutants with defective synthesis of D-alanine. Can. J. Microbiol. 34: 256-261Google Scholar
  91. Henderson B, Poole S & Wilson M (1996) Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60: 316-341Google Scholar
  92. Henrichsen J (1995) Six new recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33: 2759-2762Google Scholar
  93. Heptmstall S, Archibald AR & Baddiley J (1970) Teichoic acids and membrane function in bacteria. Nature 225: 519-521Google Scholar
  94. Herbold DR & Glaser L (1975a) Bacillus subtilis N-acetylmuramic acid L-alanine amidase. J. Biol. Chem. 250: 1676-1682Google Scholar
  95. Herbold DR & Glaser L (1975b) interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 250: 7231-7238Google Scholar
  96. Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B & Delcour J (1997) The alanine racemase gene is essential for growth of Lactobacillus plantarum. J. Bacteriol. 179: 3039-3042Google Scholar
  97. Höltje JV (1996) Bacterial lysozymes. In: Joliès P (Ed). Lysozymes: model enzymes in biochemistry and biology (pp 65-74). Birkhäuser Verlag, BaselGoogle Scholar
  98. Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181-203Google Scholar
  99. Höltje JV & Tomasz A (1975) Lipoteichoic acid: a specific inhibitor of autolysin activity inPneumococcus. Proc. Natl. Acad. Sci. USA 72: 1690-1694Google Scholar
  100. Höltje JV & Tuomanen EI (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137: 441-454Google Scholar
  101. Honeyman AL & Stewart GC (1989) The nucleotide sequence of he rodC operon of Bacillus subtilis. Mol. Microbiol. 3: 1257-1268Google Scholar
  102. Hughes AH, Hancock IC & Baddiley J (1970) Teichoic acids in cation control in bacterial membranes. Biochem. J. 132: 83-93Google Scholar
  103. Ishibashi K, Takesue S, Watanabe K & Oishi K (1982) Use of lectins to characterize the receptor sites for bacteriophage PL-1 of Lactobacillus casei. J. Gen. Microbiol. 128: 2251-2259Google Scholar
  104. Iwasaki H, Araki Y, Ito E, Nagaoka M & Yokokura T (1990) Structure of macroamphiphiles from several Bifidobacterium strains. J. Bacteriol. 171: 845-852Google Scholar
  105. Jolliffe LK, Doyle RJ & Streips UN (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763Google Scholar
  106. Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD & Ghuysen JM (1992) Modular design of the Enteroccoccus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol. Lett. 91: 257-264Google Scholar
  107. Kahala M, Savijoki K & Palva A (1997) In vivo expression of the Lactobacillus brevis S-layer gene. J. Bacteriol. 179: 284-286Google Scholar
  108. Kawagishi S, Araki Y & Ito E (1980) Bacillus cereus autolytic endoglucosaminidase active on cell wall peptidoglycan with N-unsubstituted glucosamine residues. J. Bacteriol. 141: 137-143Google Scholar
  109. Kemper MA, Urrutia MM, Beveridge TJ, Koch AL & Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J. Bacteriol. 175: 5690-5696Google Scholar
  110. Kleppe G, Vasstrand E & Jensen HB (1981) The specificity requirements of bacteriophage T4 lysozyme. Involvement of N-acetamido groups. Eur. J. Biochem. 119: 589-593Google Scholar
  111. Knox KW & Wicken AJ (1973) Immunological properties of teichoic acids. Bacteriol. Rev. 37: 215-257Google Scholar
  112. Koch AL (1985) How bacteria grow and divide in spite of internal hydrostatic pressure. Can. J. Microbiol. 31: 1071-1084Google Scholar
  113. Koch AL (1991) Effective growth by the simplest means: the bacterial way. ASM News 57: 633-637Google Scholar
  114. Koch AL (1995) Bacterial growth and form. Chapman & Hall, New York, 423 ppGoogle Scholar
  115. Koch AL & Woeste S (1992) Elasticity of the sacculus of Escherichia coli. J. Bacteriol. 174: 4811-4819Google Scholar
  116. Koch HU & Fischer W (1978) Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry 17: 5275-5281Google Scholar
  117. Koch HU, Doker R & Fischer W (1985) Maintenance of D-alanine ester substituion of lipoteichoic acid by re-esterification in Staphylococcus aureus. J. Bacteriol. 164: 1211-1217Google Scholar
  118. Kojima N, Araki Y & Ito E (1985a) Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum. Eur. J. Biochem. 148: 29-34Google Scholar
  119. Kojima N, Araki Y & Ito E (1985b) Structural studies on the acidic polysaccharide of Bacillus cereus AHU 1356 cell walls. Eur. J. Biochem. 148: 479-484Google Scholar
  120. Kojima N, Araki Y & Ito E (1986) Biosynthesis of the wall acidic polysaccharide in Bacillus cereus AHU 1356. Eur. J. Biochem. 155: 513-519Google Scholar
  121. Kolenbrander PE & London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175: 3247-3252Google Scholar
  122. Kotani S, Watanabe Y, Shimono T, Kinoshita F, Narita T, Kato K, Stewart-Tull DES & Morisaki I (1975) Immunoadjuvant activities of peptidoglycan subunits from the cell walls of Staphyloccus aureus and Lactobacillus plantarum. Biken J. 18: 93-103Google Scholar
  123. Krulwich TA, Ito M, Gilmour R & Guffanti AA (1997) Mechanisms of cytoplasmic pH regulation in alkalophilic strains of Bacillus. Extremophiles 1: 163-169Google Scholar
  124. Kullik I, Jenni R & Berger-Bächi B (1998) Sequence of putative alanine racemase operon in Staphylococcus aureus: insertional interruption of this operon reduces D-alanine substitution of lipoteichoic acid and autolysis. Gene 219: 9-17Google Scholar
  125. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256Google Scholar
  126. Labischinski H & Maidhof H (1994) Bacterial peptidoglycan: overview and evolving concepts. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall (pp 23-38). Elsevier, AmsterdamGoogle Scholar
  127. Labischinski HR, Barnickel D, Naumann D & Keller P (1985) Conformational and topological aspects of the three-dimensional architecture of bacterial peptidoglycan. Ann. Inst. Pasteur Microbiol. 136A: 45-50Google Scholar
  128. Lambert PA, Hancock IC & Baddiley J (1975a) Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem. J. 151: 671-676Google Scholar
  129. Lambert PA, Hancock IC & Baddiley J (1975b) The interaction of magnesium ions with teichoic acids. J. Biochem. 149: 519-524Google Scholar
  130. Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 59: 571-591Google Scholar
  131. Lang WK, Glassey K & Archibald AR (1982) Influence of phosphate supply on teichoic acid and teichuronic acid content of Bacillus subtilis cell walls. J. Bacteriol. 151: 367-375Google Scholar
  132. Lazarevic V & Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16: 345-355Google Scholar
  133. Lazarevic V, Margot P, Soldo B & Karamata D (1992) Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949-1961Google Scholar
  134. Lazarevic V, Mauël C, Soldo B, Freymond PP, Margot P & Karamata D (1995) Sequence analysis of the 308° to 311° segment of the Bacillus subtilis 168 chromosome, a region devoted to cell wall metabolism, containing non-coding grey holes which reveal chromosomal rearrangements. Microbiology 141: 329-335Google Scholar
  135. Lepeuple AS, Van Gemert E & Chapot-Chartier MP 1998) Analysis of the bacteriolytic enzymes of the autolytic Lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl. Environ. Microbiol. 64: 4142-4148Google Scholar
  136. Ligozzi M, Pittaluga F & Fontana R (1993) Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 175: 2046-2051Google Scholar
  137. Linnett PE & Strominger JL (1974) Amidation and cross-linking of the enzymatically synthesised peptidoglycan of Bacillus stearothermophilus. J. Biol. Chem. 249: 2489-2496Google Scholar
  138. Liu W, Eder S & Hulett FM (1998) Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180: 753-758Google Scholar
  139. Lleo MM, Fontana R & Solioz M (1995) Identification of a gene (arpU) controlling muramidase-2 export in Enterococcus hirae. J. Bacteriol. 177: 5912-5917Google Scholar
  140. Logardt IM & Neujahr HY (1975) Lysis of modified walls from Lactobacillus fermentum. J. Bacteriol. 124: 73-77Google Scholar
  141. Lortal S (1993) Crystalline surface-layers of the genus Lactobacillus. In: Beveridge TJ & Koval SF, (Eds). Advances in Bacterial Paracrystalline Surface Layers (pp 57-65). Plenum Press, New YorkGoogle Scholar
  142. Lortal S, Boyaval P & van Heijenoort J (1989) Influence de plusieurs facteurs sur l'autolyse de Lactobacillus helveticus CNRZ414. Lait 69: 223-231Google Scholar
  143. Lortal S, Rousseau M, Boyaval P & van Heijenoort J (1991) Cell wall and autolytic system of Lactobacillus helveticus ATCC 12046. J. Gen. Microbiol. 137: 549-559Google Scholar
  144. Lortal S, van Heijenoort J, Gruber K & Sleytr UB (1992) S-layer of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J. Gen. Microbiol. 138: 611-618Google Scholar
  145. Lupas A (1996) A circular permutation event in the evolution of the SLH domain? Mol. Microbiol. 20: 897-898Google Scholar
  146. Lupas A, Engelhardt H, Peters J, Santarius U, Volker S & Baumeister W (1994) Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233Google Scholar
  147. Ma D, Alberti M, Lynch C, Nikaido H & Hearst JE (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19: 101-112Google Scholar
  148. Margot P & Karamata D (1992) Identification of the structural genes for N-acetylmuramyl-L-alanine amidase and its modifier in Bacillus subtilis 168: inactivation of these genes by insertional mutagenesis has no effect on growth or cell separation. Mol. Gen. Genet. 232: 359-366Google Scholar
  149. Margot P, Mauël C & Karamata D (1994) The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535-545Google Scholar
  150. Massidda O, Kariyama R, Daneo-Moore L & Shockman GD (1996) Evidence that the PBP 5 synthesis repressor (psr) of Enterococcus hirae is also involved in the regulation of cell wall composition and other cell wall-related properties. J. Bacteriol. 178: 5272-5278Google Scholar
  151. Masuda K & Kawata T (1983) Distribution and chemical characterization of regular arrays in the cell walls of strains of the genus Lactobacillus. FEMS Microbiol. Lett. 20: 145-150Google Scholar
  152. Matsuhashi M (1994) Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall. (pp 55-71). Elsevier, AmsterdamGoogle Scholar
  153. Matsuhashi M, Dietrich CP & Strominger JL (1967) The role of soluble RNA and lipid intermediates in glycine incorporation in Staphylococcus aureus. J. Biol. Chem. 242: 3191-3206Google Scholar
  154. Mauël C, Young M, Margot P & Karamata D (1989) The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388-394Google Scholar
  155. Mauël C, Young M & Karamata D (1991) Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription uints. J. Gen. Microbiol. 137: 929-941Google Scholar
  156. McIntire FC, Crosby LK, Vatter AE, Cisar JO, McNeil MR, Bush CA, Tjoa SS & Fennessey PV (1988) A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V. J. Bacteriol. 170: 2229-2235Google Scholar
  157. Mechold U, Sterner K, Vetterman S & Malke H (1993) Genetic organization of the streptokinase region of the Streptococcus equisimilis H46A chromosome. Mol. Gen. Genet. 241: 129-140Google Scholar
  158. Mercenier A (1999) Lactic acid bacteria as live vaccines. In: Tannock G (Ed). Probiotics: A critical review Horizon (pp 113-127). Scientific Press, Wymondham, U.K.Google Scholar
  159. Mesnage S, Tosi-Couture E & Fouet A (1999) Production and cell surface anchoring of functional fusions beteen the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase. Mol. Microbiol. 31: 927-936Google Scholar
  160. Messer J & Reynolds PE (1992) Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol. Lett. 94: 195-200Google Scholar
  161. Messner P & Sleytr UB (1992) Crystalline bacterial cell-surface layers. Adv. Microb. Physiol. 33: 213-275Google Scholar
  162. Messner P, Allmaier G, Schäffer C, Wugeditsch T, Lortal S, König H, Niemetz R, Dorner M (1997) Biochemistry of layers. FEMS Microbiol. Rev. 20: 25-46Google Scholar
  163. Miörner H, Johansson G & Kronvall G (1983) Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. Infect. Immun. 39: 336-343Google Scholar
  164. Monteville MR, Ardestani B & Geller BL (1994) Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60: 3204-3211Google Scholar
  165. Mou L, Sullivan JJ & Rao GR (1976) Autolysis of Streptococcus cremoris. J. Dairy Res. 43: 275-282Google Scholar
  166. Mozes N & Lortal S (1995) X-ray photoelectron spectroscopy and biochemical analysis of the surface of Lactobacillus helveticus ATCC 12046. Microbiology 141: 11-19Google Scholar
  167. Murazumi N, Araki Y & Ito E (1986) Biosynthesis of the wall neutral polysaccharide in Bacillus cereus AHU 1356. Eur. J. Biochem. 161: 51-59Google Scholar
  168. Nagaoka M, Muto M, Nomoto K, Matuzaki T, Watanabe T & Yokokura T (1990) Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. J. Biochem. 108: 568-571Google Scholar
  169. Nagaoka M, Shibata H, Kimura I, Hashimoto S, Kimura K, Sawada H & Yokokura T (1995) Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028. Carbohyd. Res. 274: 245-249Google Scholar
  170. Nagaoka M, Hashimoto S, Shibata H, Kimura I, Kimura K, Sawada H & Yokokura T (1996) Structure of a galactan from cell walls of Bifidobacterium catenulatum YIT4016. Carbohyd. Res. 281: 285-291Google Scholar
  171. Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 110-129Google Scholar
  172. Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14: 115-121Google Scholar
  173. Navarre WW & Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174-229Google Scholar
  174. Neuhaus FC (1985) Inter-chain transacylatiobn of D-alanine ester residues of lipoteichoic acid: a unique mechanism of membrane communication. Biochem. Soc. Trans. 13: 987-990Google Scholar
  175. Neuhaus FC, Heaton MP, Debarov DV & Zhang Q (1996) The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microbial Drug Resist. 2: 77-84Google Scholar
  176. Ntamere A, Taron DJ & Neuhaus FC (1987) Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile. J. Bacteriol. 169: 1702-1711Google Scholar
  177. Ostlie HM, Vegarud G & Langsrud T (1995) Autolysis of lactococci: detection of lytic enzymes by polyacrylamide gel electrophoresis and characterization in buffer systems. Appl. Environ. Microbiol. 61: 3598-3603Google Scholar
  178. Park W, Seto H, Hakenbeck R & Matsuhashi M (1985) Major peptidoglycan transglycosylase activity in Streptococcus pneumoniae that is not a penicillin binding protein. FEMS Microbiol. Lett. 27: 45-48Google Scholar
  179. Park IS, Lin CH & Walsh CT (1996) Gam of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35: 10464-10471Google Scholar
  180. Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P & Bellon-Fontaine MN (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl. Environ. Microbiol. 63: 1725-1731Google Scholar
  181. Perego M, Glaser P, Minutello A, Strauch MA, Leopold K & Fischer W (1995) Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. J. Biol. Chem. 270: 15598-15606Google Scholar
  182. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M & Grass A (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J. Bacteriol. 179: 3068-3072Google Scholar
  183. Piras G, Raze D, El Kharroubi A, Hastir D, Englebert S, Coyette J & Ghuysen JM (1993) Cloning and sequencing of the low-affinity penicillin-binding protein 3r-encoding gene of Enterococcus hirae S185: modular design and structural organization of the protein. J. Bacteriol. 175: 2844-2852Google Scholar
  184. Pisabarro AG, De Pedro MA & Ishiguro EE (1990) Dissociation of the ampicillin-induced lysis of amino acid-deprived Escherichia coli into two stages. J. Bacteriol. 172: 2187-2190Google Scholar
  185. Pooley HM & Karamata D (1994) Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles. In: Ghuysen JM & Hakenbeck R, (Eds). Bacterial Cell Wall (pp 187-198). Elsevier, AmsterdamGoogle Scholar
  186. Pooley HM, Paschoud D & Karamata D (1987) The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J. Gen. Microbiol. 133: 3481-3493Google Scholar
  187. Pooley HM, Abellan FX & Karamata D (1991) A conditional-lethal mutant of Bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid. J. Gen. Microbiol. 137: 921-928Google Scholar
  188. Pozzi G, Contorni M, Oggioni MR, Manganelli R, Tommasino M, Cavalieri F & Fischetti VA (1992) Delivery and expression of a heterologous antigen on the surface of streptococci. Infect. Immun. 60: 1902-1907Google Scholar
  189. Promadej N, Fiedler F, Cossart P, Dramsi S & Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b rrequires gtcA, a novel, serogroup-specific gene. J. Bacteriol. 181: 418-425Google Scholar
  190. Pucci MJ, Thanassi JA, Discotto LF, Kessler RE & Dougherty TJ (1997) Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632-5635Google Scholar
  191. Pum D & Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8-12Google Scholar
  192. Qi Y & Hulett FM (1998) Role of PhoP-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180: 4007-4010Google Scholar
  193. Rachel R, Pum D, Smarda J, Smajs D, Komrska J, Krzyzanek V, Rieger G & Stetter KO (1997) Fine structure of S-layers. FEMS Microbiol. Rev. 20: 13-23Google Scholar
  194. Raetz CRH (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In: Neidhardt FC, (Ed.) Escherichia coli and Salmonella, cellular and molecular biology. 2nd ed. (pp 1035-1063). ASM Press, Washington DC (USA)Google Scholar
  195. Redondo-Lopez V, Cook RL & Sobel JD (1990) Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial micro-flora. Rev. Infect. Dis. 12: 856-872Google Scholar
  196. Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido N, Klena J, Maskell D, Raets CRH & Rick PD (1996) Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 4: 495-503Google Scholar
  197. Riepe HR, Pillidge CJ, Gopal PK & McKay LL (1997) Characterization of the highly autolytic Lactococcus lactis subsp. cremoris strains CO and 2250. Appl. Environ. Microbiol. 63: 3757-3763Google Scholar
  198. Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285-315Google Scholar
  199. Rosenberg M & Kjelleberg S (1986) Hydrophobic interactions: role in bacterial adhesion. Microbiol. Ecol. 9: 353-393Google Scholar
  200. Rothfield LI & Zhao CR (1996) How do bacteria decide where to divide? Cell 84: 183-186Google Scholar
  201. Rothfield LI & Justice SS (1997) Bacterial cell division: the cycle of the ring. Cell 88: 581-584Google Scholar
  202. Salton MRJ (1994) The bacterial cell envelope — a historical perspective. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 1-22). Elsevier, AmsterdamGoogle Scholar
  203. Sandholm E & Sarimo SS (1981) Autolysis of Streptococcus thermophilus. FEMS Microbiol. Lett. 11: 125-129Google Scholar
  204. Sara M, Egelseer EM, Dekitsch C & Sleytr UB (1998) Identification of two binding domains, one for peptidoglycan and another for a secondary cell wall polymer, on the N-terminal part of the Slayer protein SbsB from Bacillus stearothermophilus PV72/p2. J. Bacteriol. 180: 6780-6783Google Scholar
  205. Savijoki K, Kahala M & Palva A (1997) High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 186: 255-262Google Scholar
  206. Schleifer KH & Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477Google Scholar
  207. Schleifer KH & Kilpper-Bälz R (1987) Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst. Appl. Microbiol. 10: 1-19Google Scholar
  208. Schwab JH (1993) Phlogistic properties of peptidoglycan-polysaccharide polymers from cell walls of pathogenic and normal-flora bacteria which colonize humans. Infect. Immun. 61: 4535-4539Google Scholar
  209. Shockman GD & Höltje JV (1994) Microbial peptidoglycan (murein) hydrolases. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 131-166). Elsevier, AmsterdamGoogle Scholar
  210. Shockman GD, Daneo-Moore L, Kariyama R & Massidda O (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb. Drag Resist. 2: 95-98Google Scholar
  211. Signoretto C, Boaretti M & Canepari C (1994) Cloning, sequencing and expression in Escherichia coli of the low affinity penicillin-binding protein of Enterococcus faecalis. FEMS Microbiol. Lett. 123: 99-106Google Scholar
  212. Sijtsma L, Sterkenburg A & Wouters JT (1988) Properties of the cell walls of Lactococcus lactis subsp. Cremoris SKI 10 and SKI 12 and their relation to bacteriophage resistance. Appl. Environ. Microbiol. 54: 2808-2811Google Scholar
  213. Sijtsma L, Wouters JTM & Hellingwerf KJ (1990) Isolation and characterization of lipoteichoic acid, a cell envelope component involved in preventing phage adsorption, from Lactococcus lactis subsp. cremoris SKI 10. J. Bacteriol. 172: 7126-7130Google Scholar
  214. Sleytr UB (1997) Basic and applied S-layer research: an overview. FEMS Microbiol. Rev. 20: 5-12Google Scholar
  215. Sleytr UB & Sara M (1997) Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol. 15: 20-26Google Scholar
  216. Sleytr UB, Messner P, Pum D & Sara M (1993) Crystalline bacterial cell surface layers. Mol. Microbriol. 10: 911-916Google Scholar
  217. Sleytr UB, Bayley H, Sara M, Breitwieser A, Küpcü S, Mader C. et al. (1997) Applications of S-layers. FEMS Microbiol. Rev. 20: 151-175Google Scholar
  218. Sneath PHA, Mair NS, Sharpe ME & Holt JG (Eds.) (1986) Bergey's manual of systematic bacteriology (Vol. 2). Williams and Wilkins, BaltimoreGoogle Scholar
  219. Soldo B, Lazarevic V, Pagni M & Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31: 795-805Google Scholar
  220. Stahl S & Uhlen M (1997) Bacterial surface display: trends and progress. Trends Biotechnol. 15: 185-192Google Scholar
  221. Steidler L, Viaene J, Fiers W & Remaut E (1998) Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus Protein A. Appl. Environ. Microbiol. 64: 342-345Google Scholar
  222. Stimpson SA, Brown RR, Anderle SK, Klapper DG, Clark RL, Cromartie WJ & Schwab JH (1986) Arthropathic properties of cell wall polymers from normal flora bacteria. Infect. Immun. 51: 240-249Google Scholar
  223. Stingele F & Mollet B (1996) Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Mol. Microbiol. 22: 357-366Google Scholar
  224. Stingele F, Neeser JR & Mollet B (1996) Identification and Characterization of the eps (Exopolysaccharide) Gene Cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680-1690Google Scholar
  225. Sutcliffe IC & Shaw N (1991) Atypical lipoteichoic acids of gram-positive bacteria. J. Bacteriol. 173: 7065-7069Google Scholar
  226. Tannock G (Ed.) (1999) Probiotics: A critical review. Horizon Scientific Press, Wymondham, U.K.Google Scholar
  227. Toba T, Virkola R, Westerlund B, Björkman Y, Sillanpää J, Vartio T, Kalkkinen N & Korhonen TK (1995) A collagen-binding S-layer protein in Lactobacillus crispatus. Appl. Environ. Microbiol. 61: 2467-2471Google Scholar
  228. Tsukioka Y, Yamashita Y, Oho T, Nakano Y & Koga T (1997a) Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans. J. Bacteriol. 179: 1126-1134Google Scholar
  229. Tsukioka Y, Yamashita Y, Nakano Y, Oho T & Koga T (1997b) Identification of a fourth gene involved in dTDP-rhamnose synthesis in Streptococcus mutans. J. Bacteriol. 179: 4411-4414Google Scholar
  230. Tsutsui O, Kikeguchi S, Matsumara K & Kato K (1991) Relationship of the chemical structure and immunobiological activities of lipoteichoic acid from Streptococcus faecalis (Enterococcus hirae) ATCC 9790. FEMS Microbiol. Immunol. 76: 211-218Google Scholar
  231. Urrutia MM, Kemper M, Doyle R & Bevendge TJ (1992) The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls. Appl. Environ. Microbiol. 58: 3837-3844Google Scholar
  232. Valence F & Lortal S (1995) Zymogram and preliminary characterization of Lactobacillus helveticus autolysins. Appl. Environ. Microbiol. 61: 3391-3399Google Scholar
  233. Valyasevi R, Sandine WE & Geller BL (1990) The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882-1889Google Scholar
  234. van Heijenoort J (1994) Biosynthesis of the bacterial peptidoglycan unit. In: Ghuysen JM & Hakenbeck R (Eds) Bacterial Cell Wall (pp 39-54). Elsevier, AmsterdamGoogle Scholar
  235. Van Kranenburg R, Marugg JD, van Swan II, Willem NJ & de Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387-397Google Scholar
  236. Vegarud G, Castberg HB & Langsrud T (1983) Autolysis of group N Streptococci. Effects of media composition modifications and temperature. J. Dairy Sci. 66: 2294-2302Google Scholar
  237. Vidgren G, Palva I, Pakkanen R, Lounatmaa K & Palva A (1992) S-layer protein gene of Lactobacillus brevis: cloning by polymerase chain reaction and determination of the nucleotide sequence. J. Bacteriol. 174: 7419-7427Google Scholar
  238. Ward JB (1973) The chain length of glycans in bacterial cell walls. Biochem. J. 133: 395-398Google Scholar
  239. Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol. Rev. 45: 211-243Google Scholar
  240. Wecke J, Perego M & Fischer W (1996) D-alanine deprivation of Bacillus subtilis teichoic acid is without effect on cell growth and morphology but affects the autolytic activity. Microb. Drug Resist. 2: 123-129Google Scholar
  241. Wecke J, Madela K & Fischer W (1997) The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143: 2953-2960Google Scholar
  242. Whitfield C (1988) Bacterial extracellular polysaccharides. Can. J. Microbiol. 34: 415-420Google Scholar
  243. Whittaker CJ, Klier CM & Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: 513-552Google Scholar
  244. Wicken AJ & Knox KW (1970) Studies in the group F antigen of lactobacilli: isolation of a teichoic acid-lipid complex from Lactobacillus fermenti NCTC6991. J. Gen. Microbiol. 60: 293-301Google Scholar
  245. Wicken AJ & Knox KW (1975) Lipoteichoic acids: a new class of bacterial antigen. Science 187: 1161-1167Google Scholar
  246. Wicken AJ & Knox KW (1980) Bacterial cell surface amphiphiles. Biochim. Biophys. Acta 604: 1-26Google Scholar
  247. Wicken AJ, Ayres A, Campbell LK & Knox KW (1983) Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus. J. Bacteriol. 153: 84-92Google Scholar
  248. Wicken AJ, Evans JD & Knox KW (1986) Critical micelle concentrations of lipoteichoic acids. J. Bacteriol. 166: 72-77Google Scholar
  249. Yamada M, Hirose A & Matsuashi M (1975) Association of lack of cell wall teichuronic acid with formation of cell packets of Micrococcus lysodeikticus (luteus) mutants. J. Bacteriol. 123: 678-686Google Scholar
  250. Yamanaka K, Araki J, Takano M & Sekiguchi J (1997) Characterization of Bacillus subtilis mutants resistant to cold shock-induced autolysis. FEMS Microbiol. Lett. 150: 269-275Google Scholar
  251. Yamashita Y, Tsukioka Y, Nakano Y, Tomihisa K, Oho T & Koga T (1998a) Biological functions of UDP-glucose synthesis in Streptococcus mutans. Microbiology 144: 1235-1245Google Scholar
  252. Yamashita Y, Tsukioka Y, Tomihisa K, Nakano Y & Koga T (1998b) Genes involved in cell wall localization and side chain formation of rhamnose-glucose polysaccharide in Streptococcus mutans. J. Bacteriol. 180: 5803-5807Google Scholar
  253. Yasui T, Yoda K & Kamiya T (1995) Analysis of S-layer proteins of Lactobacillus brevis. FEMS Microbiol. Lett. 133: 181-186Google Scholar
  254. Young FE (1967) Requirement of glycosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc. Natl. Acad. Sci. USA. 58: 2377-2384Google Scholar
  255. Young FE, Smith C & Reilly BE (1969) Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. J. Bacteriol. 98: 1087-1097Google Scholar
  256. Zipperle GF Jr, Ezzell JW Jr & Doyle RJ (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can. J. Microbiol. 30: 553-559Google Scholar
  257. Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L & Coyette J (1996) Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178: 4948-4957Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Jean Delcour
    • 1
    Email author
  • Thierry Ferain
    • 1
  • Marie Deghorain
    • 1
  • Emmanuelle Palumbo
    • 1
  • Pascal Hols
    • 1
  1. 1.Université Catholique de Louvain, Unité de GénétiqueLouvain-la-NeuveBelgium

Personalised recommendations