Advertisement

Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 279–292 | Cite as

Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials

  • Colum Dunne
  • Lisa Murphy
  • Sarah Flynn
  • Liam O'Mahony
  • Sile O'Halloran
  • Maria Feeney
  • Darrin Morrissey
  • Gerardine Thornton
  • Gerald Fitzgerald
  • Charles Daly
  • Barry Kiely
  • Eamonn M. M. Quigley
  • Gerald C. O'Sullivan
  • Fergus Shanahan
  • J. Kevin CollinsEmail author
Article

Abstract

The enteric flora comprise approximately 95% of the total number of cells in the human body and are capable of eliciting immune responses while also protecting against microbial pathogens. However, the resident bacterial flora of the gastrointestinal tract (GIT) may also be implicated in the pathogenesis of several chronic conditions such as inflammatory bowel disease (IBD). The University College Cork-based Probiotic Research Group has successfully isolated and identified lactic acid bacteria (LAB) which exhibit beneficial probiotic traits. These characteristics include the demonstration of bile tolerance; acid resistance; adherence to host epithelial tissue; and in vitro antagonism of potentially-pathogenic micro-organisms or those which have been implicated in promoting inflammation. The primary objective of this report is to describe the strategy adopted for the selection of potentially effective probiotic bacteria. The study further describes the evaluation of two m embers of the resulting panel of micro-organisms (Lactobacillus salivarius subsp. salivarius UCC118 and Bifidobacterium longum infantis 35624) under in vitro conditions and throughout in vivo murine and human feeding trials. Specifically, an initial feeding study completed in Balb/c mice focused upon (i) effective delivery of the probiotic micro-organisms to the GIT and evaluation of the ability of the introduced strains to survive transit through, and possibly colonise, the murine GIT; (ii) accepting the complexity of the hostile GIT and faecal environments, development of a method of enumerating the introduced bacterial strains using conventional microbiological techniques; and (iii) assessment of the effects of administered bacterial strains on the numbers of specific recoverable indigenous bacteria in the murine GIT and faeces. Additional research, exploiting the availability of murine models of inflammatory bowel disease, demonstrated the beneficial effects of administering probi otic combinations of Lactobacillus salivarius UCC118 and Bifidobacterium longum infantis 35624 in prevention of illness-related weight loss. A further ethically-approved feeding trial, successfully conducted in 80 healthy volunteers, demonstrated that yoghurt can be used as a vehicle for delivery of Lactobacillus salivarius strain UCC118 to the human GIT with considerable efficacy in influencing gut flora and colonisation.

Keywords

Inflammatory Bowel Disease Lactic Acid Bacterium Probiotic Bacterium Feeding Trial Bifidobacterium Longum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abee T, Klaenhammer TR & Letellier L (1994) Kinetic studies of the action of Lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60: 1006-1013Google Scholar
  2. Alander M, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T & von Wright A (1997) Recovery of Lactobacillius rhamnosus GG from human colonic biopsies. Lett. Appl. Microbiol. 24: 361-364Google Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990)Basic local alignment search tool. J. Mol. Biol. 215: 403-410Google Scholar
  4. Aranda R, Sydora B, McAllister PL, Binder SW, Ying Yang H, Targan SR & Kronenberg M (1997) Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45 RB highT cells to SCID recipients. J. Immunol. 3464-3473Google Scholar
  5. Aso Y & Akazan H (1992) Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer. Urol. Int. 49: 125-129Google Scholar
  6. Bartram HP, Scheppach W, Gerlach S, Ruckdeschel G, Kelber E & Kasper H (1994) Does yogurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolites in healthy subjects? Am. J. Clin. Nutr. 59: 428-432Google Scholar
  7. Berg RD (1998) Probiotics, prebiotics or'conbiotics'. Trends Microbiol. 6: 89-92Google Scholar
  8. Bernet M-F, Brassart D, Neeser J-R & Servin AL (1993) Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl. Environ. Microbiol. 59: 4121-4128Google Scholar
  9. Bernet MF, Brassart D, Neeser JR & Servin AL (1994) Lactobacillus acidophilus LA-1 binds to cultured human intestinal cell-lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35: 483-489Google Scholar
  10. Brassart D, Schiffrin E, Rochat F, Offord EA, Macé C & Neeser J-R (1998) The future of functional foods: Scientific basis and future requirements. Lebensmittel Technol. 7-8: 258-266Google Scholar
  11. Coconnier M-H, Klaenhammer TR, Kerneis S, Bernet M-F & Servin AL (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microbiol. 58: 2034-2039Google Scholar
  12. Collins JK, Thornton G & Sullivan GD (1998) Selection of probiotic strains for human applications. Int. Dairy J. 8: 487-490Google Scholar
  13. Cornwell GG, Sletten K, Johansson B & Westermark P (1988) Evidence that the amyloid fibril protein in senile systemic amyloidosis is derived from normal prealbumin. Biochem. Biophys. Res. Commun. 154: 648-653Google Scholar
  14. Crociani J, Grill J-P, Huppert M & Ballongue J (1995) Adhesion of different bifidobacteria strains to human enterocyte-like Caco-2 cells and comparison with in vivo study. Lett. Appl. Microbiol. 21: 146-148Google Scholar
  15. Daly C & Davis R (1998) The biotechnology of lactic acid bacteria with emphasis on applications in food safety and human health. Agricultural Food Sci. in Finland 7: 251-265Google Scholar
  16. De Man JC, Rogosa M & Sharpe MT (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135Google Scholar
  17. Dodd HM & Gasson MJ (1994) Bacteriocins of lactic acid bacteria. In: Gasson MJ & de Vos WM (Eds) Genetics and biotechnology of lactic acid bacteria (pp 211-251). Blackie Academic and Professional, GlasgowGoogle Scholar
  18. Draser BS, Shiner M & McLeod GM (1969) Studies on the intestinal flora 1. The bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterol. 56: 71-79Google Scholar
  19. Dunne C, O'Halloran S, O'Mahony L, Feeney M, Kiely B, von Wright A, Vilpoonen-Salmela T, Shanahan F, O'Sullivan G & Collins JK (1999) Epithelial adhesion of probiotic microorganisms in vitro and in vivo. Gastroenterol. 116:4 (2): G3058Google Scholar
  20. Favier C, Neut C, Mizon C, Cortot A, Colombel JF & Mizon J (1997) Fecal B-D-Galactosidase production and bifidobacteria are decreased in Crohn's disease. Dig. Dis. Sci. 42: 817-822Google Scholar
  21. Floch MH, Binder HJ, Filburn B & Gershengoren W (1972) The effect of bile acids on intestinal microflora. Am. J. Clin. Nutr. 25: 1418-1426Google Scholar
  22. Fuller R (1989) A review: probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378Google Scholar
  23. Fonty G, Raibaud P & Gouet P (1993) Manipulation of the gut microflora: experimental approach in animals. Proc. Nutr. Soc. 52: 345-356Google Scholar
  24. Fykse EM, Sletten K, Husby G & Cornwell GG (1988)The primary structure of the variable region of an immunoglobulin IV light-chain amyloid-fibril protein (AL GIL). Biochem. J. 256: 973-980Google Scholar
  25. Goldin BR & Gorbach SL (1992) Probiotics for humans. In: Fuller R (Ed) Probiotics, the scientific basis (pp 355-376). Chapman and Hall, LondonGoogle Scholar
  26. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L & Salminen S (1992) Survival of Lactobacillus species (Strain GG) in human gastrointestinal tract. Dig. Dis. Sci. 37: 121-128Google Scholar
  27. Greene JD & Klaenhammer TR (1994) Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60: 4487-4494Google Scholar
  28. Guarner F & Schaafsma GJ (1998) Probiotics. Int. J. Food Microbiol. 39: 237-238Google Scholar
  29. Hill MJ & Draser BS (1968) Degradation of bile salts by human intestinal bacteria. Gut 9: 22-27Google Scholar
  30. Hoffman AF, Molino G, Milanese M & Belforte G (1983) Description and stimulation of a physiological pharmokinetic model for the metabolism and enterohepatic circulation of bile acids in man. J. Clin. Invest. 71: 1003-1022Google Scholar
  31. Huis in't Veld J & Shortt C (1996) Selection criteria for probiotic micro-organisms. In: Leeds AR & Rowland IR (Eds) Gut Flora and Health — Past, Present and Future (pp 19-26). The Royal Society of Medicine Press Ltd, LondonGoogle Scholar
  32. Hylemon PB & Glass TL (1983) Biotransformation of bile acids and cholesterol by the intestinal microflora. In: Hentges DJ (Ed) Human intestinal microflora in health and disease (pp 189-213). Academic Press, New YorkGoogle Scholar
  33. Isolauri E, Juntunen M, Saxelin M & Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J. Pediatr. Gastroenterol. 20: 333-336Google Scholar
  34. Jack RW, Tagg JR & Ray B (1995) Bacteriocins of Gram positive bacteria. Microbiol. Rev. 59: 171-200Google Scholar
  35. Kandler O & Weiss N (1986) Regular, non-sporing Gram positive rods. In: Sneath PHA, Mair N, Sharpe ME & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology (pp 2: 1208-1234) Williams and Wilkins, BaltimoreGoogle Scholar
  36. Kerneis S, Bilge SS, Fourel V, Chauviere G, Coconnier M-H & Servin AL (1991) Use of purified F1845 fimbrial adhesin to study localization and expression of receptors for diffusely adhering Escherichia coli during enterocytic differentiation of human colon carcinoma cell lines HT-29 and Caco-2 in culture. Infect. Immun. 59: 4013-4018Google Scholar
  37. Lee Y-K & Salminen S (1995) The coming age of probiotics. Trends Food Sci. Technol. 6: 241-245Google Scholar
  38. Lewis R & Gorbach S (1972) Modification of bile acids by intestinal bacteria. Arch. Intern. Med. 130: 545-549Google Scholar
  39. Lidbeck A, Overnick E, Rafter J, Nord CE & Gustaffsson JA (1992) Effect of Lactobacillus acidophilus supplements on mutagen excretion in faeces and urine in humans. Micro. Ecol. Health. Dis. 5: 59-67Google Scholar
  40. Marteau P, Flourie B, & Pochart P et al. (1990) Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am. J. Clin. Nutr. 52: 685-688Google Scholar
  41. Marteau P & Rambaud J-C (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12: 207-220Google Scholar
  42. Mattila-Sandholm T (1997) Demonstration Project FAIR CT96-1028. In: Alander M, Kauppila T & Mattila-Sandholm T (Eds) Novel methods for probiotic research: 2nd workshop demonstration of the nutritional functionality of probiotic foods FAIR CT96-1028 (pp 11-17). Technical Research Centre of Finland (VTT)Google Scholar
  43. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P & Abee T (1998) Lanticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 64: 439-445Google Scholar
  44. McCracken VJ & Gaskins HR (1999) Probiotics a critical review. Horizon Scientific Press, UKGoogle Scholar
  45. Millar MR, Bacon C, Smith SL, Walker V & Hall MA (1993) Enteral feeding of premature infants with Lactobacillus GG. Arch. Dis. Child. 69: 483-487Google Scholar
  46. Mitsuoka T (1984) Taxonomy and ecology of bifidobacteria. Bifidobacteria Microflora 3: 11-28Google Scholar
  47. Molin G, Jeppsson B & Johansson ML et al. (1993) Numerical taxonomy of Lactobacillus sp. associated with healthy and diseased mucosa of the human intestines. J. Appl. Bacteriol. 1993: 74: 314-323Google Scholar
  48. Morotomi M, Watanabe T, Suegara N, Kawai Y & Mutai M (1975) Distribution of indigenous bacteria in the digestive tract of conventional and gnotobiotic rats. Infect. Immun. 11: 962-968Google Scholar
  49. Morrisey PJ, Charrier K, Braddy S, Liggitt D & Watson JD (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J. Exp. Med. 178: 237-244Google Scholar
  50. Murphy L, Dunne C, Kiely B, Shanahan F, O'Sullivan GC & Collins JK (Submitted) In vivo assessment of potential probiotic Lactobacillus salivarius strains: evaluation of their establishment, persistence, and localisation in the murine gastrointestinal tractGoogle Scholar
  51. Neeser J-R, Chambaz A, Golliard M, Link-Amster H, Fryder V & Kolodziejczyk E (1989) Adhesion of colonisation factor antigen II-positive enterotoxigenic Escherichia coli strains to human enterocytelike differentiated HT-29 cells: a basis for host-pathogen interactions in the gut. Infect. Immun. 57: 3727-3734Google Scholar
  52. Neutra MR & Kraehenbuhl J-P (1996) Essentials of mucosal immunology. Academic Press, San DiegoGoogle Scholar
  53. Oksanen PI, Salminen S & Saxelin M et al. (1990) Prevention of traveller's diarrhea by Lactobacillus GG. Ann. Med. 22: 53-56Google Scholar
  54. O'Riordan K & Fitzgerald GF (1997) Determination of genetic diversity within the genus Bifidobacterium and estimation of chromosomal size. FEMS Microbiol. Lett. 156: 259-264Google Scholar
  55. O'Sullivan MG, Thornton GM, O'Sullivan GC & Collins JK (1992) Probiotic bacteria: myth or reality? Trends Food Sci. Technol. 3: 309-314Google Scholar
  56. Ouwehand AC (1998) Antimicrobial components from lactic acid bacteria. In: Salminen S & von Wright A (Eds) Lactic acid bacteria: Microbiology and functional aspects, 2nd edition (pp 139-160). Marcel Dekker Inc., New YorkGoogle Scholar
  57. Pedrosa MC, Golner BB, Goldin BR, Barakat S, Dallal GE & Russell RM (1995) Survival of yogurt-containing organisms and Lactobacillus gasseri (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypochlorhydric elderly subjects. Am. J. Clin. Nutr. 61: 353-359Google Scholar
  58. Percy-Robb IW & Collee JG (1972) Bile acids: a pH dependent antibacterial system in the gut? Brit. Med. J. 3: 813-815Google Scholar
  59. Salminen S, Deighton MA & Gorbach SL (1993) Lactic acid bacteria in health and disease. In: Salminen S. & von Wright A (Eds) Lactic acid bacteria (pp 199-225). Marcel Dekker Inc., New YorkGoogle Scholar
  60. Salminen S, Isolauri E & Onnela T (1995) Gut microflora in health and disease. Chemotherapy 41(suppl 1): 5-15Google Scholar
  61. Salminen S, Isolauri E & Salminen E (1996) Clinical uses of probiotics for stabilising the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 70: 251-262Google Scholar
  62. Salminen S, Deighton MA, Benno Y & Gorbach SL (1998a) Lactic acid bacteria in health and disease. In: Salminen S. & von Wright A (Eds) Lactic acid bacteria: Microbiology and functional aspects, 2nd edition (pp 211-254). Marcel Dekker Inc., New YorkGoogle Scholar
  63. Salminen S, Bouley C, Boutron-Ruault M-C, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau M-C, Roberfroid M & Rowland I (1998b) Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80(suppl 1): s147-s171Google Scholar
  64. Sarem F, Sarem-Damerdji LO & Nicolas JP (1996) Comparison of the adherence of three Lactobacillus strains to Caco-2 and Int-407 human intestinal cell lines. Lett. Appl. Microbiol. 22: 439-442Google Scholar
  65. Savage DC (1997) Microbial Ecology of the Gut. Academic Press, LondonGoogle Scholar
  66. Saxelin M (1997) Lactobacillus GG — a human probiotic strain with thorough clinical documentation. Food Reviews Int. 13: 293-313Google Scholar
  67. Schaafsma G (1995) Application of lactic acid bacteria in novel foods from a nutritional perspective. In: Novel G & Le Querler J-F (Eds) Lactic acid bacteria: Actes du Colloque LACTIC 94 (pp 85-93). Presses Universitaires de CaenGoogle Scholar
  68. Sepp E, Mikelsaar M & Salminen S (1993) Effect of administration of Lactobacillus casei strain GG on the gastrointestinal microbiota of newborns. Microbiol. Ecol. Health Dis. 6: 309-314Google Scholar
  69. Shanahan F (1994) Physiology of the gastrointestinal tract. Raven PressGoogle Scholar
  70. Shimada K, Bricknell KS & Finegold SM (1969) Deconjugation of bile acids by intestinal bacteria: a review of literature and additional studies. J. Infect. Dis. 119: 73-81Google Scholar
  71. Siitonen S, Vapautalo H & Salminen S et al. (1990) Effect of Lactobacillus GG yogurt in prevention of antibiotic-associated diarrhea. Ann. Med. 22: 57-59Google Scholar
  72. Sletten K & Husby G (1974) The complete amino acid sequence of non-immunoglobulin amyloid proteins AS in rheumatoid arthritis. Eur. J. Biochem. 41: 117-125Google Scholar
  73. Spanhaak S, Havenaar R & Schaafsma G (1998) The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur. J. Clin. Nutr. 52: 899-907.Google Scholar
  74. Stewart L, Pellegrini CA & Way LW (1986) Antibacterial activity of bile acids against common biliary tract organisms. Surg. Forum 37: 157-159Google Scholar
  75. Tagg JR & McGiven AR (1971)Assay systems for bacteriocins. App. Microbiol.21:943Google Scholar
  76. Tannock GW (1997) Probiotic properties of lactic-acid bacteria: plenty of scope for fundamental R & D. TIBTECH 15: 270-274Google Scholar
  77. Thornton GM (1996) Probiotic bacteria. Selection of Lactobacillus and Bifidobacterium strains from the healthy human gastrointestinal tract; characterisation of a novel Lactobacillus-derived antibacterial protein. (Thesis). National University of IrelandGoogle Scholar
  78. Tuomola (née Lehto) EM & Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 41: 45-51Google Scholar
  79. Wostmann BS (1996) Germfree and gnotobiotic animal models. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Colum Dunne
    • 1
    • 2
  • Lisa Murphy
    • 1
  • Sarah Flynn
    • 1
  • Liam O'Mahony
    • 1
  • Sile O'Halloran
    • 1
  • Maria Feeney
    • 1
  • Darrin Morrissey
    • 1
    • 2
  • Gerardine Thornton
    • 1
  • Gerald Fitzgerald
    • 1
    • 2
  • Charles Daly
    • 1
    • 2
  • Barry Kiely
    • 2
  • Eamonn M. M. Quigley
    • 4
  • Gerald C. O'Sullivan
    • 3
  • Fergus Shanahan
    • 4
  • J. Kevin Collins
    • 1
    • 4
    Email author
  1. 1.Department of MicrobiologyUniversity CollegeCorkIreland
  2. 2.National Food Biotechnology CentreUniversity CollegeCorkIreland
  3. 3.Department of SurgeryMercy HospitalCorkIreland
  4. 4.Department of MedicineUniversity CollegeCorkIreland

Personalised recommendations