Boundary-Layer Meteorology

, Volume 93, Issue 2, pp 237–251 | Cite as

A Bulk Blowing Snow Model

  • Stephen J. Déry
  • M. K. Yau


We present in this paper a simple and computationally efficient numerical model that depicts a column of sublimating, blowing snow. This bulk model predicts the mixing ratio of suspended snow by solving an equation that considers the diffusion, settling and sublimation of blowing snow in a time-dependent mode. The bulk model results compare very well with those of a previous spectral version of the model, while increasing its computational efficiency by a factor of about one hundred. This will allow the use of the model to estimate the effects of blowing snow upon the atmospheric boundary layer and to the mass balance of such regions as the Mackenzie River Basin of Canada.

Blowing snow Bulk modelling Mackenzie Basin Sublimation Suspension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bintanja, R.: 1998a, ‘The Interaction Between Drifting Snow and Atmospheric Turbulence’, Annals Glaciol. 26, 167-173.Google Scholar
  2. Bintanja, R.: 1998b, ‘The Contribution of Snowdrift Sublimation to the Surface Mass Balance of Antarctica’, Annals Glaciol. 27, 251-259.Google Scholar
  3. Budd, W. F.: 1966, ‘The Drifting of Non-Uniform Snow Particles’, in Rubin, M. J. (ed.), Studies in Antarctic Meteorology, Antarctic Research Series Vol. 9, American Geophysical Union, Washington, DC, pp. 59-70.Google Scholar
  4. Déry, S. J. and Taylor, P. A.: 1996: ‘Some Aspects of the Interaction of Blowing Snow with the Atmospheric Boundary Layer’, Hydrol. Proc. 10, 1345-1358.Google Scholar
  5. Déry, S. J., Taylor, P. A., and Xiao, J.: 1998, ‘The Thermodynamic Effects of Sublimating, Blowing Snow in the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 89(2), 251-283.Google Scholar
  6. Déry, S. J. and Yau, M. K.: 1999, ‘A Climatology of Adverse Winter-Type Weather Events’, J. Geophys. Res. 104(D14), 16,657-16,672.Google Scholar
  7. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  8. King, J. C., Anderson, P. S., Smith, M. C., and Mobbs, S. D.: 1996, ‘The Surface Energy and Mass Balance at Halley, Antarctica during Winter’, J. Geophys. Res. 101(D14), 19,119-19,128.Google Scholar
  9. Kong, F. and Yau, M. K.: 1997, ‘An Explicit Approach to Microphysics in the MC2’, Atmos.-Ocean 35, 257-291.Google Scholar
  10. Lee, L. W.: 1975, Sublimation of Snow in Turbulent Atmosphere, Unpublished Ph. D. Dissertation, Dept. of Mechanical Engineering, University of Wyoming, Laramie WY, 82070, 162 pp.Google Scholar
  11. Li, L. and Pomeroy, J. W.: 1997, ‘Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data’, J. Appl. Meteorol. 36, 205-213.Google Scholar
  12. Liston, G. E. and Sturm, M.: 1998, ‘A Snow-Transport Model for Complex Terrain’, J. Glaciol. 44, 498-516.Google Scholar
  13. Mobbs, S. D. and Dover, S. E.: 1993, ‘Numerical Modelling of Blowing Snow’, in Antarctic Special Topic, British Antarctic Survey, Cambridge, pp. 55-63.Google Scholar
  14. Pomeroy, J. W., Gray, D. M., and Landine, P. G.: 1993, ‘The Prairie Blowing Snow Model: Characteristics, Validation, Operation’, J. Hydrol. 144, 165-192.Google Scholar
  15. Pomeroy, J.W., Marsh, P. and Gray, D.M.: 1997, ‘Application of a Distributed Blowing Snow Model to the Arctic’, Hydrol. Proc. 11, 1451-1464.Google Scholar
  16. Rogers, R. R. and Yau, M. K.: 1989, A Short Course in Cloud Physics, 3rd ed., Pergamon Press, 293 pp.Google Scholar
  17. Rouault, R. R., Mestayer, P. G., and Schiestel, R.: 1991, ‘A Model of Evaporating Spray Droplet Dispersion’, J. Geophys. Res. 96(C4), 7181-7200.Google Scholar
  18. Schmidt, R. A.: 1972, Sublimation of Wind-Transported Snow-A Model, USDA Res. Paper RM-90, USDA Forestry Service, Rocky Mountain Forest and Range Experimental Station, Fort Collins, Colorado, 24 pp.Google Scholar
  19. Schmidt, R. A.: 1982, ‘Vertical Profiles of Wind Speed, Snow Concentrations, and Humidity in Blowing Snow’, Boundary-Layer Meteorol. 23, 223-246.Google Scholar
  20. Stewart, R. E., Leighton, H. G., Marsh, P., Moore, G. W. K., Rouse, W. R., Soulis, S. D., Strong, G. S., Crawford, R. W., and Kochtubajda, B.: 1998, ‘The Mackenzie GEWEX Study: The Water and Energy Cycles of a Major North American River Basin’, Bull. Amer. Meteorol. Soc. 79(12), 2665-2684.Google Scholar
  21. Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Press, Dordrecht, 666 pp.Google Scholar
  22. Tabler, R. D. and Schmidt, R. A.: 1972, ‘Weather Conditions that Determine Snow Transport Distances at a Site in Wyoming’, in UNESCO/WMO Symposia on the Role of Snow and Ice in Hydrology, 118-127.Google Scholar
  23. Tabler, R. D.: 1975, ‘Estimating the Transport and Evaporation of Blowing Snow’, In Proc. Symposium on Snow Management on the Great Plains, Great Plains Agricultural Council Publ. 73, pp. 85-104.Google Scholar
  24. Taylor, P. A.: 1969, ‘On Planetary Boundary Layer Flow under Conditions of Neutral Thermal Stability’, J. Atmos. Sci. 26, 427-431.Google Scholar
  25. Thorpe, A. D. and Mason, B. J.: 1966, ‘The Evaporation of Ice Spheres and Ice Crystals’, Brit. J. Appl. Phys. 17, 541-548.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Stephen J. Déry
    • 1
  • M. K. Yau
    • 1
  1. 1.Department of Atmospheric and Oceanic SciencesMcGill UniversityMontréalCanada

Personalised recommendations