Advertisement

Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 207–215 | Cite as

Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties

  • Hans Meisel
  • Wilhelm Bockelmann
Article

Abstract

The bioactivities of peptides encrypted in major milk proteins are latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. The proteolytic system of lactic acid bacteria can contribute to the liberation of bioactive peptides. In vitro, the purified cell wall proteinase of Lactococcus lactis was shown to liberate oligopeptides from β- and α-caseins which contain amino acid sequences present in casomorphins, casokinines, and immunopeptides. The further degradation of these peptides by endopeptidases and exopeptidases of lactic acid bacteria could lead to the liberation of bioactive peptides in fermented milk products. However, the sequences of practically all known biologically active peptides can also be cleaved by peptidases from lactic acid bacteria. Activated peptides are potential modulators of various regulatory processes in the body: Opioid peptides are opioid receptor ligands which can modulate ab sorption processes in the intestinal tract, angiotensin-I-converting enzyme (ACE)-inhibitory peptides are hemodynamic regulators and exert an antihypertensive effect, immunomodulating casein peptides stimulate the activities of cells of the immune system, antimicrobial peptides kill sensitive microorganisms, antithrombotic peptides inhibit aggregation of platelets and caseinophosphopeptides may function as carriers for different minerals, especially calcium. Bioactive peptides can interact with target sites at the luminal side of the intestinal tract. Furthermore, they can be absorbed and then reach peripheral organs. Food-derived bioactive peptides are claimed to be health enhancing components which can be used for functional food and pharmaceutical preparations.

bioactive peptides functional foods lactic acid bacteria milk proteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariyoshi Y (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4: 139-144Google Scholar
  2. Bellamy W, Takase M, Yamauchi K, Kawase K, Shimamura S & Tomita M (1992) Identification of the bactericidial domain of lactoferrin. Biochim. Biophys. Acta 1121: 130-136Google Scholar
  3. Bellamy W, Wakabayashi H, Takase M, Kawase K, Shimamura S & Tomota M (1993) Role of cell-binding in the antibacterial mechanism of lactoferricin B. J. Appl. Bacteriol. 75: 478-484Google Scholar
  4. Bockelmann W (1995) The proteolytic system of starter and nonstarter bacteria: components and their importance for cheese ripening. Int. Dairy J. 5: 977-994Google Scholar
  5. Bockelmann W, Fobker M. & Teuber M (1991) Purification and characterization of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy J. 1: 51-66Google Scholar
  6. Bouhallab S, Mollé D & Léonil J (1992) Tryptic hydrolysis of case-inomacropeptide in membrane reactor: preparation of bioactive peptides. Biotechnol. Lett. 14: 805-810Google Scholar
  7. Brandsch M, Brust P, Neubert K & Ermisch A (1994). β-Casomorphins — chemical signals of intestinal transport systems. In: Brantl V & Teschemacher H (Eds) β-Casomorphins and Related Peptides: Recent Developments (pp 207-219). VCH, WeinheimGoogle Scholar
  8. Brantl V, Teschemacher H, Bläsig J, Henschen A & Lottspeich F (1981) Opioid activities of β-casomorphins. Life Sci. 28: 1903-1909Google Scholar
  9. Bruneval P, Hinglais N & Alhenc-Gelas F (1986) Angiotensin I converting enzyme in human intestine and kidney. Ultrastructural immunohistochemical localization. Histochemistry 86: 73-80Google Scholar
  10. Chiba H, Tani F & Yoshikawa M (1989) Opioid antagonist peptides derived from κ-casein. J. Dairy Res. 56: 363-366Google Scholar
  11. Chiba H & Yoshikawa M (1986) Biologically functional peptides from food proteins: New opioid peptides from milk proteins. In: Feeney RE & Whitaker JR (Eds) Protein Tailoring for Food and Medical Uses (pp 123-153). Marcel Dekker Inc., New YorkGoogle Scholar
  12. Daniel H, Vohwinkel M & Rehner G (1990a) Effect of casein and β-Casomorphins on gastrointestinal motility in rats. J. Nutr. 120: 252-257Google Scholar
  13. Daniel H, Wessendorf A, Vohwinkel M & Brantl V (1990b) Effect of D-Ala2,4Tyr5-β-casomorphin-5-amide on gastrointestinal functions. In: Nyberg F & Brantl V (Eds) β-Casomorphins and Related Peptides (pp 95-104). Fyris-Tryck AB, UppsalaGoogle Scholar
  14. Dionysius DA & Milne JM (1998) Antibacterial peptides of bovine lactoferrin: purification and characterizaton. J. Dairy Sci. 80: 667-674Google Scholar
  15. Elitsur Y & Luk GD (1991) β-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clin. Experiment. Immunol. 85: 493-497Google Scholar
  16. Fiat AM & Jollès P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol. Cell. Biochem. 87: 5-30Google Scholar
  17. FitzGerald RJ (1998) Potential uses of caseinophosphopeptides. Int. Dairy J. 8: 451-457Google Scholar
  18. FitzGerald RJ & Meisel H (1999) Lactokinins: Whey Protein-derived ACE Inhibitory Peptides. Nahrung/Food 431: 165-167Google Scholar
  19. Fukudome S-I & Yoshikawa M (1994) Isolation and characterizaton of opioid peptides derived from wheat gluten. In: V. Brantl & H. Teschemacher (Eds) β-Casomorphins and related peptides: recent developments (pp 27-33). VCH, WeinheimGoogle Scholar
  20. Hadden JW (1991) Immunotherapy of human immunodeficiency virus infection. Trends Pharmaceutical Sci. 12: 107-111Google Scholar
  21. Hamel U, Kielwein G & Teschemacher H (1985) β-casomorphin immunoreactive materials in cow's milk incubated with various bacterial species. J. Dairy Res. 52: 139-148Google Scholar
  22. Hansen M, Sandstöm B, Jensen M & Sörensen SS (1997) Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole grain infant cereal. J. Pediatr. Gastroenterol. Nutr. 24: 56-62Google Scholar
  23. Johnston CI (1992) Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control. J. Hypertension 10: S13-S26Google Scholar
  24. Jollès P, Lévy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A, Dunn FW & Caen JB (1986) Analogy between fibrinogen and casein. Eur. J. Biochem. 158: 379-384Google Scholar
  25. Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP & Konings WN (1995) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. J. Bacteriol. 177: 3472-3478Google Scholar
  26. Kasai T, Honda T & Kiriyama S (1992) Caseinophosphopeptides (CPP) in feces of rats fed casein diet. Biosci. Biotechnol. Biochem. 56: 1150-1151Google Scholar
  27. Kayser H & Meisel H (1996) Stimulation of human peripheral blood lymphocytes by bioactive peptides derived from bovine milk proteins. FEES Lett. 383: 18-20Google Scholar
  28. Kitts DD & Yuan YV (1992) Caseinophosphopeptides and calcium bioavailability. Trends in Food Sci. & Technol. 3: 31-35Google Scholar
  29. Konings WN, Lolkema JS, Bolhuis H, van Veen HW, Poolman B. & Driessen AJM (1997) The role of transport processes in survival of lactic acid bacteria. Antonie van Leeuwenhoek 71: 117-128Google Scholar
  30. Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187-221Google Scholar
  31. Lahov E & Regelson W (1996) Antibacterial and immunostimulating casein-derived substances from milk: casesidin isracidin peptides. Fd. Chem. Toxic. 34: 131-145Google Scholar
  32. Law J & Haandrikman A (1997) Proteolytic enzymes of lactic acid bacteria. Int. Dairy J. 7: 1-11Google Scholar
  33. Loukas S, Varoucha D, Zioudrou C, Streaty RA & Klee WA (1983) Opioid activities and structures of α-casein-dervied exorphins. Biochemistry 22: 4567-4573Google Scholar
  34. Maeno M, Yamamoto Y & Takano T (1998) Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79: 1316-1321Google Scholar
  35. McDonagh D & FitzGerald RJ (1998) Production of caseinophosphopeptides (CPPs) from sodium caseinate using a range of commercial protease preparations. Int. Dairy J. 8: 39-45Google Scholar
  36. Meisel H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett. 196: 223-227Google Scholar
  37. Meisel H (1993) Casokinins as inhibitors of Angiotensin-Converting-Enzyme. In: Sawatzki G & Renner B (Eds) New Perspectives in Infant Nutrition (pp 153-159). Thieme, Stuttgart, New YorkGoogle Scholar
  38. Meisel H (1997a) Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmacological applications. Liv. Prod. Sci. 50: 125-138Google Scholar
  39. Meisel H (1997b) Biochemical properties of regulatory peptides derived from milk proteins. Biopoly. 43: 119-128Google Scholar
  40. Meisel H (1998) Overview on milk protein-derived peptides. Int. Dairy J. 8: 363-373Google Scholar
  41. Meisel H & Frister H (1988) Chemical characterization of a case-inophosphopeptide isolated from in vivo digests of a casein diet. Biol. Chem. Hoppe-Seyler 369: 1275-1279Google Scholar
  42. Meisel H & Frister H (1989) Chemical characterization of bioactive peptides from in vivo digests of casein. J. Dairy Res. 56: 343-349Google Scholar
  43. Meisel H & Schlimme E (1994) Inhibitors of Angiotensin-Converting-Enzyme derived from bovine Casein (Casokinins). In: Brantl V & Teschemacher H (Eds) β-Casomorphins and related peptides: recent developments (pp 27-33). VCH, WeinheimGoogle Scholar
  44. Meisel H & Schlimme E (1996) Bioactive peptides derived from milk proteins: Ingredients for functional foods? Kieler Milchwirtschaftl. Forschungsber. 48: 343-357Google Scholar
  45. Meisel H, Goepfert A & Günther S (1997) Occurence of ACE inhibitory peptides in milk products. Milchwissenschaft 52 307-311Google Scholar
  46. Mierau I, Kunji ERS, Venema G & Kok J (1997) Casein and peptide degradation in lactic acid bacteria. Biotech. Genetic Engineering Rev. 14: 279-301Google Scholar
  47. Migliore-Samour D, Floc'h F & Jollès P. (1989) Biologically active casein peptides implicated in immunomodulation. J. Dairy Res. 56: 357-362Google Scholar
  48. Monnet V, Bockelmann W, Gripon JC & Teuber M (1989) Comparison of cell wall proteinases from Lactococcus lactis subsp. cremoris AC1 and Lactococcus lactis subsp. lactis NCDO 763. II. specificity towards bovine b-casein. Appl. Microbiol. Biotechnol. 31: 112-118Google Scholar
  49. Monnet V, Chapot-Chartier MP & Gripon JC (1993) Lactococcal peptidases. Lait 73: 97-108Google Scholar
  50. Muehlenkamp MR & Warthesen JJ (1996) β-Casomorphins: analysis in cheese and susceptibility to proteolytic enzymes from Lactobacillus lactis ssp. cremoris. J. Dairy Sci. 79: 20-26Google Scholar
  51. Mullally MM Meisel H & FitzGerald RJ (1996) Synthetic peptides corresponding to α-lactalbumin and β-lactoglobulin sequences with angiotensin-I-converting enzyme inhibitory activity. Biol. Chem. Hoppe-Seyler 377: 259-260Google Scholar
  52. Mullally MM, Meisel H & FitzGerald RJ (1997) Identification of novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of β-lactoglobulin. FEBS Lett. 402: 99-101Google Scholar
  53. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S & Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from a sour milk. J. Dairy Sci. 78: 777-783Google Scholar
  54. Ondetti MA & Cushman DW (1982) Enzymes of the renin-angiotensin system and their inhibitors. Ann. Rev. Biochem. 51: 283-308Google Scholar
  55. Pelissier JP (1984) Proteolysis of caseins. Sciences des Aliments 4: 1-35Google Scholar
  56. Pihlanto-Leppälä A, Rokka T & Korhonen H (1998) Angiotensin I converting enzyme inhibitory peptides from bovine milk proteins. Int. Dairy J. 8: 325-331Google Scholar
  57. Poolman B, Kunji, ERS, Hagting A, Juillard V & Konings WN (1995) The proteolytic pathway of Lactococcus lactis. J. Appl. Bacteriol. Symp. Supp. 79: 65S-75SGoogle Scholar
  58. Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179-206Google Scholar
  59. Reynolds E (1987) Phosphopeptides. PCT Int. Patent Application WO 87/07615 AlGoogle Scholar
  60. Reid JR, Coolbear T, Pillidge CJ & Pritchard GG (1994) Specificity of hydrolysis of bovine κ-casein by cell envelope-associated proteinases from Lactococcus lactis strains. Appl. Environ. Microbiol. 60: 801-806Google Scholar
  61. Reid JR, Moore CH, Midwinter GG & Pritchard GG (1991) Action of cell wall proteinase from Lactococcus lactis subsp. cremoris SK11 on bovine α S1-casein. Appl. Microbiol. Biotechnol. 35: 222-227Google Scholar
  62. Sato R, Naguchi T & Naito H (1986) Casein phosphopeptide (CPP) enhance calcium absorption from the ligated segment of rat small intestine. J. Nutri. Sci. Vitaminol. 32: 67-76Google Scholar
  63. Schanbacher FL, Talhouk RS & Murray FA (1997) Biology and origin of bioactive peptides in milk. Liv. Prod. Sci. 50: 105-123Google Scholar
  64. Shimizu M (1999) Modulation of intestinal functions by food substances. Nahrung/Food 143: 154-158Google Scholar
  65. Suetsuna K & Osajima K (1989) Blood pressure reduction and vasodilatory effects in vivo of peptides originating from sardine muscle (in Japan). J. Jp. Soc. Nutr. Food Sci. 42: 47-54Google Scholar
  66. Svedberg J, de Haas J, Leimenstoll G, Paul F & Teschemacher H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6: 825-830Google Scholar
  67. Teschemacher H & Brantl V (1994) Milk protein derived atypical opioid peptides and related compounds with opioid antagonist activity. In: Brantl V & Teschemacher H (Eds) β-Casomorphins and Related Peptides: Recent Developments (pp 3-17). VCH, WeinheimGoogle Scholar
  68. Teschemacher H, Umbach M, Hamel U, Praetorius K, Ahnert-Hilger G, Brantl V, Lottspeich F & Henschen A (1986) No evidence for the presence of β-casomorphins in human plasma after ingestion of cows' milk or milk products. J. Dairy Res. 53: 135-138Google Scholar
  69. Teschemacher H, Koch G & Brantl V (1997) Milk protein-derived opioid receptor ligands. Biopoly. 43: 99-117Google Scholar
  70. Tomé D, Dumontier AM, Hautefeuille M & Desjeux JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am. J. Physiol. 253: G737-G744Google Scholar
  71. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H & Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J. Dairy Sci. 74: 4137-4142Google Scholar
  72. Tomita M, Takase M, Bellamy W & Shimamura S (1994) A review: the active peptide of lactoferrin. Acta Pediatr. Jpn. 36: 585-591Google Scholar
  73. Umbach M, Teschemacher H, Praetorius K, Hirschhäuser R & Bostedt H (1985) Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12: 223-230Google Scholar
  74. Visser S, Slangen J, Exterkate FA & de Veer GJCM (1988) Action of a cell wall proteinase (PI) from streptococcus cremoris HP on bovine β-casein. Appl. Microbiol. Biotechnol. 29: 61-66Google Scholar
  75. Yamamoto N (1997) Antihypertensive peptides derived from food proteins. Biopoly. 43: 129-134Google Scholar
  76. Yamamoto N, Akino A & Takano T (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77: 917-922Google Scholar
  77. Yoshikawa M, Tani F & Chiba H (1988) Structure-activity relationship of opioid antagonist peptides derived from milk proteins. In: Shiba T (Ed) Peptide Chemistry (pp 473-476). Protein Research Foundation, OsakaGoogle Scholar
  78. Zucht HD, Raida M, Andermann K, Mägert H-J & Forssman WG (1995) Casocidin-I: a casein-α S2 derived peptide exhibits antibacterial activity. FEBS Lett. 372 185-188Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Hans Meisel
    • 1
    • 2
  • Wilhelm Bockelmann
    • 1
    • 3
  1. 1.Federal Dairy Research CentreSwitzerland
  2. 2.Institute for Chemistry and PhysicsGermany
  3. 3.Institute for MicrobiologyKielGermany

Personalised recommendations