Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 265–278 | Cite as

Analysis of the intestinal microflora: a renaissance

  • Gerald W. Tannock

Abstract

The ability of microbial ecologists to analyse the composition of complex bacterial communities has been greatly enhanced by the application of molecular methodologies. The use of these techniques should enable an accurate record of the identity and population dynamics of the inhabitants of the intestinal tract to be obtained, and should promote an improved comprehension of the relationship between the microflora and the human host. This, in turn, will lead to a new concept of the intestinal microflora of humans.

bacteria intestine methodology microbial ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann RI, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169Google Scholar
  2. Aranki A & Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am. J. Clin. Nutr. 25: 1329-1334Google Scholar
  3. Ballongue J (1993) Bifidobacteria and probiotic action. In: Salminen S & von Wright A (Eds) Lactic Acid Bacteria (pp 357-428). Marcel Dekker, New YorkGoogle Scholar
  4. Barrow PA, Brooker BE, Fuller R & Newport MJ (1980) The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J. Appl. Bacteriol. 48: 147-154Google Scholar
  5. Bassam BJ, Allen T, Flood S, Stevens J, Wyatt P & Livak KJ (1996) Nucleic acid sequence detection systems: revolutionary automation for monitoring and reporting PCR products. Australasian Biotechnol. 6: 285-294Google Scholar
  6. Bateup JM, Dobbinson S, McConnell MA, Munro K & Tannock GW (1998) Molecular analysis of the composition of Lactobacillus populations inhabiting the stomach and caecum of pigs. Microbial Ecology in Health and Disease 10: 95-102Google Scholar
  7. Berg RD (1983) Host immune response to antigens of the indigenous intestinal flora. In: Hentges DJ (Ed) Human Intestinal Micro flora in Health and Disease (pp 101-126). Academic Press, New YorkGoogle Scholar
  8. Biavati B, Castagnoli P, Crociani F & Trovatelli LD (1984) Species of the genus Bifidobacterium in the feces of infants. Microbiologica 7: 341-345Google Scholar
  9. Biavati B, Castagnoli P & Trovatelli LD (1986) Species of the genus Bifidobacterium in the feces of adults. Microbiologica 9: 39-45Google Scholar
  10. Bry L, Falk PG, Midtvedt T & Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273: 1380-1383Google Scholar
  11. Caufield PW (1997) Dental caries — a transmissible and infectious disease revisited: a position paper. Pediatric Dentitstry 19: 491-498Google Scholar
  12. Chadwick VS & Chen W (1999) The intestinal microflora and inflammatory bowel disease. In: Tannock GW (Ed) Medical Importance of the Normal Microflora (pp 177-221). Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  13. Croucher SC, Houston AP, Bayliss CE & Turner RJ (1983) Bacterial populations associated with different regions of the human colon wall. Appl. Environ. Microbiol. 45: 1025-1033Google Scholar
  14. Cummings JH & Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70: 443-459Google Scholar
  15. Drasar BS & Barrow PA (1985) Intestinal Microbiology. American Society for Microbiology, Washington DCGoogle Scholar
  16. Drasar BS & Hill MJ (1974) Human Intestinal Flora. Academic Press, LondonGoogle Scholar
  17. Dubos R, Schaedler RW, Costello R & Hoet P (1965) Indigenous, normal, and autochthonous flora of the gastrointestinal tract. J. Exper. Med. 122: 67-76Google Scholar
  18. Felske A, Rheims H, Wolterink A, Stackebrandt E & Akkermans ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class of Actinobacteria in grassland soils. Microbiology 143: 2983-2989Google Scholar
  19. Ferguson WK (1967) The Renaissance. Holt, Rinehart and Winston, New YorkGoogle Scholar
  20. Finegold SM (1977) Anaerobic Bacteria in Human Disease. Academic Press, New YorkGoogle Scholar
  21. Finegold SM, Attebury R & Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am. J. Clin. Nutr. 27: 1456-1469Google Scholar
  22. Finegold SM, Sutter VL & Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (Ed) Human Intestinal Microflora in Health and Disease (pp 3-31). Academic Press, New YorkGoogle Scholar
  23. Finegold SM & Sutter VL (1978) Fecal flora in different populations, with special reference lo diet. Am. J. Clin. Nutr. 31: S116-S122Google Scholar
  24. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F & Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64: 3336-3345Google Scholar
  25. Fuller R (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378Google Scholar
  26. Fuller R (1999) Probiotics for farm animals. In: Tannock GW (Ed) Probiotics: a Critical Review (pp 15-22). Horizon Scientific Press, Wymondham, UKGoogle Scholar
  27. Fuller R & Brooker BE (1974) Lactobacilli which attach lo the crop epithelium of the fowl. Am. J. Clin. Nutr. 27: 1305-1312Google Scholar
  28. Gastone JSH (1997) Pathogenic role of gut inflammation in the spondyloarthropathies. Current Opinion in Rheumatology 9: 302-307Google Scholar
  29. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L & Salminen S (1992) Survival of Lactobacillus species (strain GG) in human gastroinlestinal tract. Digestive Diseases and Sciences 37: 121-128Google Scholar
  30. Goldin BR, Swenson L, Dwyer J, Sexton M & Gorabch SL1 (980) Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. National Cancer Institute 64: 255-261Google Scholar
  31. Goodwin MA, Cooper GL, Brown J, Bickford AA, Waltman WD & Dickson TG (1991) Clinical, pathological, and epizootiological features of the long-segmented filamentous organisms (Bacteria, LSFOs) in the small intestines of chickens, turkeys, and quails. Avian Diseases 35: 872-876Google Scholar
  32. Gordon HA & Pesti L (1971) The gnotobiotic animal as a tool in the study of host-microbial relationships. Bacteriol. Rev. 35: 390-429Google Scholar
  33. Gracey M (1983) The contaminated small bowel syndrome. In: Hentges DJ (Ed) Human Intestinal Microflora in Health and Disease (pp 495-513). Academic Press, New YorkGoogle Scholar
  34. Gurtler V & Stanisich VA (1996) New approaches lo typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142: 3-16Google Scholar
  35. Hill JE, Kelley LC & Langheinrich KA (1992) Visceral granulomas in chickens infected with a filamentous bacteria. Avian Diseases 36: 172-176Google Scholar
  36. Holdeman LV & Moore WEC (1972) Roll-lube technique for anaerobic bacteria. Am. J. Clin. Nutr. 25: 1314-1317Google Scholar
  37. Hungate RE (1966) The Rumen and its Microbes. Academic Press, New YorkGoogle Scholar
  38. Husni RN, Gordon SM, Washington JA & Longworth DL (1997) Lactobacillus bacteremia and endocarditis: review of 45 cases. Clinical Infectious Diseases 25: 1048-1055Google Scholar
  39. Jepson MA, Clark MA, Simmons NL & Hirst BH (1993) Actin accumulations at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infection and Immunity 61: 4001-4004Google Scholar
  40. Kato I, Kobayashi S, Yokokura T & Mutai M (1981) Antitumor activity of Lactobacillus casei in mice. Gann 72: 517-523Google Scholar
  41. Kimura K, McCartney AL, McConnell MA & Tannock GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigations of the immunological responses of their human hosts to the predominant strains. Appl. Environ. Microbiol. 63: 3394-3398Google Scholar
  42. Klaasen HLBM, Koopman JP, van den Brink ME, van Wezel HPN & Beynen AC (1991) Mono-association of mice with non-cultivable, intestinal, segemented, filamentous bacteria. Archives of Microbiology 156: 148-151Google Scholar
  43. Klaasen HLBM, Koopman JP, Poelma FGJ & Beynen AC (1992) Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 88: 165-180Google Scholar
  44. Klaasen HLBM, van der Heijden PJ, Stok W, Poelma FGJ, Koopman JP, van den Brink ME, Bakker MH, Eling WMC & Beynen AC (1993) Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infection and Immunity 61: 303-306Google Scholar
  45. Kolenbrander PE (1991) Coaggregation: adherence in the human oral microbial ecosystem. In: Dworkin M (Ed) Microbial Cell-Cell Interactions (pp 303-329). American Society for Microbiology, Washington DCGoogle Scholar
  46. Lehman TJ, Cremer MA, Walker SM & Dillon AM (1987) The role of humoral immunity in Lactobacillus casei cell wall induced arthritis. J. Rheumatology 14: 415-419Google Scholar
  47. Luckey TD (1963) Germfree Life and Gnotobiology. Academic Press, New YorkGoogle Scholar
  48. Macfarlane GT & Macfarlane S (1995) Human intestinal'biofilm' communities. In: Wimpenny J, Handley P, Gilbert P & Lappin-Scott H (Eds) The Life and Death of Biofilm (pp 83-87). BioLine, CardiffGoogle Scholar
  49. McCartney AL, Wang W & Tannock GW (1996) Molecular analysis of the composition of the bifidobacterial and lactobacillus micro flora of humans. Appl. Environ. Microbiol. 62: 4608-4613Google Scholar
  50. Mitsuoka T (1992) The human gastrointestinal tract. In: Wood BJB (Ed) The Lactic Acid Bacteria, Volume 1, The Lactic Acid Bacteria in Health and Disease (pp 69-114). Elsevier Applied Science, LondonGoogle Scholar
  51. Moore WEC, Cato EP & Holdeman LV (1978) Some current concepts in intestinal bacteriology. Am. J. Clin. Nutr. 31: S33-S42Google Scholar
  52. Moore WEC & Holdeman LV (1974) Special problems associated with the isolation and identification of intestinal bacteria in fecal flora studies. Am. J. Clin. Nutr. 27: 1450-1455Google Scholar
  53. Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leewenhoek 73: 127-141Google Scholar
  54. O'Sullivan DJ (1999) Methods of analysis of the intestinal microflora. In: Tannock GW (Ed) Probiotics: a Critical Review (pp 23-44). Horizon Scientific Press, Wymondham, UKGoogle Scholar
  55. Pasteur L (1885) Observations relatives a la note precedente de M. Duclaux. Academies des Sciences, Comptes Rendues (Paris) 100: 68Google Scholar
  56. Perdigon G & Alvarez S (1992) Probiotics and the immune state. In: Fuller R (Ed) Probiotics. The Scientific Basis (pp 146-180). Chapman and Hall, LondonGoogle Scholar
  57. Raskin L, Capman WC, Sharp R, Poulsen LK & Stahl DA (1997) Molecular ecology of gastrointestinal ecosystems. In: Mackie RI, White BA & Isaacson RE (Eds) Gastrointestinal Microbiology, Volume 2, Gastrointestinal Microbes and Host Interactions (pp 243-298). Chapman and Hall, New YorkGoogle Scholar
  58. Reilly K & Attwood GT (1998) Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64: 907-913Google Scholar
  59. Rettger LF, Levy MN, Weinstein L & Weiss JE (1935) Lactobacillus acidophilus and its Therapeutic Application. Yale University Press, New Haven, USAGoogle Scholar
  60. Reysenbach A-L, Giver LJ, Wickham GS & Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58: 3417-3418Google Scholar
  61. Roberton AM & Corfield AP (1999) Mucin degradation and its significance in inflammatory conditions of the gastrointestinal tract. In: Tannock GW (Ed) Medical Importance of the Normal Microflora (pp 222-261). Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  62. Salyers AA & Whitt DD (1994) Bacterial Pathogenesis. American Society for Microbiology, Washington DCGoogle Scholar
  63. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annual Reviews of Microbiology 31: 107-133Google Scholar
  64. Savage DC (1983) Morphological diversity among members of the gastrointestinal microflora. International Review of Cytology 82: 305-334Google Scholar
  65. Savage DC, Dubos R & Schaedler RW (1968) The gastrointestinal epithelium and its autochthonous bacterial flora. J. Exper. Med. 127: 67-76Google Scholar
  66. Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM & Donnet-Hughes A (1995) Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci. 78: 491-497Google Scholar
  67. Severijnen AJ, van Kleef R, Hazenberg MP & van de Merwe J (1989) Cell wall fragments from major residents of the human intestinal flora induce chronic arthritis in rats. J. Rheumatology 16: 1061-1068Google Scholar
  68. Snel J (1997) Symbiosis between the Mouse and Segmented Filamentous Bacteria: a Gnotobiotic Study. PhD thesis, University of NijmegenGoogle Scholar
  69. Stackebrandt E & and Rainey FA (1995) Partial and complete 16S rDNA sequences, their use in generation of 16S phylogenetic trees and their implications in molecular ecological studies. In: Akkermans DL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (pp 1-17). Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  70. Summanen P, Baron EJ, Citron DM, Strong C, Wexler HM & Finegold SM (1993) Wadsworth Anaerobic Bacteriology Manual. Star Publishing Company, Belmont, USAGoogle Scholar
  71. Swaminathan B & Matar GM (1993) Molecular typing methods. In: Persing DH, Smith TF, Tenover FC & White TJ (Eds) Diagnostic Molecular Microbiology. Principles and Applications (pp 26-50). American Society for Microbiology, Washington DCGoogle Scholar
  72. Szentkuti L, Riedesel H, Enss M-L, Gaertner K & von Engelhardt W (1990) Pre-epithelial mucus layer in the colon of conventional and germfree rats. Histochemistry J. 22: 491-497Google Scholar
  73. Tagg JR, Pybus V, Phillips LV & Fiddes TM (1983) Application of inhibitor typing in a study of the transmission and retention in the human mouth of the bacterium Streptococcus salivarius. Archives of Oral Biology 28: 911-915Google Scholar
  74. Tannock GW (1987) Demonstration of mucosa-associated microbial populations in the colons of mice. Appl. Environ. Microbiol. 53: 1964-1968Google Scholar
  75. Tannock GW (1995a) Normal microflora. An introduction to microbes inhabiting the human body. Chapman and Hall, LondonGoogle Scholar
  76. Tannock GW (1995b) Microecology of the gastrointestinal tract in relation to lactic acid bacteria. International Dairy J. 5: 1059-1070Google Scholar
  77. Tannock GW (1997) Influences of the normal microbiota on the animal host. In: Mackie RI, White BA & Isaacson RE (Eds) Gastrointestinal Microbiology, Volume 2, Gastrointestinal Microbes and Host Interactions (pp 466-497). Chapman and Hall, New YorkGoogle Scholar
  78. Tannock GW (Ed) (1999) Medical Importance of the Normal Microflora. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  79. Tannock GW (Ed) (1999) Probiotics: a Critical Review. Horizon Scientific Press, Wymondham, UKGoogle Scholar
  80. Tannock GW, Crichton C, Welling GW, Koopman JP & Midtvedt T (1988) Reconstitution of the gastrointestinal microflora of lactobacillus-free mice. Appl. Environ. Microbiol. 54: 2971-2975Google Scholar
  81. Tannock GW, Fuller R, Smith SL & Hall MA (1990) Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli, and bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol. 28: 1225-1228Google Scholar
  82. Welling GW, Elfferich P, Raangs GC, Wildeboer-Veloo ACM, Jansen GJ & Degener JE (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scandanavian J. Gastroenterology 32 Supplement 222: 17-19Google Scholar
  83. Wilson KH & Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62: 2273-2278Google Scholar
  84. Zoetendal E, Akkermans AD & De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64: 3854-3859Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Gerald W. Tannock
    • 1
  1. 1.Department of MicrobiologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations