Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 139–155 | Cite as

Multi-domain, cell-envelope proteinases of lactic acid bacteria

  • Roland J. Siezen

Abstract

The multi-domain, cell-envelope proteinases encoded by the genes prtB of Lactobacillus delbrueckii subsp. bulgaricus, prtH of Lactobacillus helveticus, prtP of Lactococcus lactis, scpA of Streptococcus pyogenes and csp of Streptococcus agalactiae have been compared using multiple sequence alignment, secondary structure prediction and database homology searching methods. This comparative analysis has led to the prediction of a number of different domains in these cell-envelope proteinases, and their homology, characteristics and putative function are described. These domains include, starting from the N-terminus, a pre-pro-domain for secretion and activation, a serine protease domain (with a smaller inserted domain), two large middle domains A and B of unknown but possibly regulatory function, a helical spacer domain, a hydrophilic cell-wall spacer or attachment domain, and a cell-wall anchor domain. Not all domains are present in each cell-envelope proteinase, suggesting that these multi-domain proteins are the result of gene shuffling and domain swapping during evolution.

cell envelope cell surface domains lactic acid bacteria proteinase subtilase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410Google Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25: 3389-3402Google Scholar
  3. Baron M, Norman DG & Campbell ID (1991) Protein modules. Trends Biochem. Sci. 16: 13-17Google Scholar
  4. Barr PJ (1991) Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66: 1-3Google Scholar
  5. Berger B, Wilson DB, Wolf E, Tonchev T, Milla M & Kim PS (1995) Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci 92: 8259-8263Google Scholar
  6. Boot HJ, Kolen CPAM & Pouwels PH (1995) Identification, cloning and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 177: 7222-7230Google Scholar
  7. Bork P (1991) Shuffled domains in extracellular proteins. FEBS Letters 286: 47-54Google Scholar
  8. Bruinenberg PG, Doesburg P, Alting AC, Exterkate FA, deVos WM & Siezen RJ (1994a) Evidence for a large dispensable segment in the subtilisin-like catalytic domain of the Lactococcus lactis cell-envelope proteinase. Protein Eng. 7: 991-996Google Scholar
  9. Bruinenberg PG, deVos WM & Siezen RJ (1994b) Prevention of C-terminal autoprocessing of Lactococcus lactis SKI 1 cell-envelope proteinase by engineering of an essential surface loop. Biochem. J. 302: 957-963Google Scholar
  10. Buist G, Venema G & Kok J (1998) Autolysis of Lactococcus lactis is influenced by proteolysis. J. Bacteriol. 180, 5947-5953Google Scholar
  11. Bullough PA, Hughson FM, Skehel JJ & Wiley JJ (1994) Structure of influenza heamagglutinin at the pH of membrane fusion. Nature 371: 37-43Google Scholar
  12. Campbell ID & Downing AK (1994) Building protein structure and function from modular units. Trends Biotech. 12: 168-172Google Scholar
  13. Chen CC & Cleary PP (1989) Cloning and expression of the streptococcal C5a peptidase gene in Escherichia coli: linkage to the type 12 m protein gene. Infect. and Immun. 57: 1740-1745Google Scholar
  14. Chen CC & Cleary PP (1990) Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265: 3161-3167Google Scholar
  15. Chmouryguina I, Suvorov A, Ferrieri P & Cleary PP (1996) Conservation of the C5a peptidase genes in group A and B streptococci. Infect. and Immun. 64: 2387-2390Google Scholar
  16. Coggins JR (1991) Deletions, fusions and domain rearrangements. Current Opinion Biotech. 2: 576-581Google Scholar
  17. Coolbear T, Reid JR & Pritchard GG (1992) Stability and specificity of the cell-wall associated proteinase from Lactococcus lactis subsp. H2 released by treatment with lysozyme in the presence of calcium ions. Appl. Environm. Microbiol. 58: 3263-3270Google Scholar
  18. Devereux J, Haeberli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acid Res. 12: 387-395Google Scholar
  19. De Vos WM & Siezen RJ (1994) Engineering pivotal proteins for lactococcal proteolysis. In: Andrews AT & Varley J (Eds) Biochemistry of Milk Products, Royal Society of Chemistry, Cambridge, UK, pp. 56-71Google Scholar
  20. Doolittle RF & Bork P (1993) Evolutionary mobile modules in proteins. Sci. American, Oct.: 34-40Google Scholar
  21. Exterkate FA (1990) Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl. Microbiol. Biotechnol. 33: 401-406Google Scholar
  22. Exterkate FA, Alting AC & Slangen CJ (1991) Specificity of two genetically related cell-envelope proteinases of Lactococcus lactis subsp. cremoris towards α s1-casein-(1-23)-fragment. Biochem. J. 273: 135-139Google Scholar
  23. Exterkate FA, Alting AC & Bruinenberg PG (1993) Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl. Environm. Microbiol. 59: 3640-3647Google Scholar
  24. Exterkate FA (1995) The lactococcal cell envelope proteinases: differences, calcium-binding effects and role in cheese ripening. Int. Dairy Journal 5: 995-1018Google Scholar
  25. Exterkate FA & Alting AC (1999) The role of calcium in the activity and stability of the Lactococcus lactis cell-envelope proteinase. Appl. Environm. Microbiol., in pressGoogle Scholar
  26. Fischetti VA (1991) Streptococcal m protein. Sci. American, June: 32-39Google Scholar
  27. Fischetti VA, Pancholi V & Schneewind O (1991) Common characteristics of the surface proteins from gram-positive cocci. In: Dunny GM, Cleary PP & McKay LL (Eds) Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, American Society for Microbiol., pp. 290-294Google Scholar
  28. Gallagher T, Gilliland G, Wang L & Bryan P (1995) The prosegment-subtilisin BPN' complex: crystal structure of a specific'foldase'. Structure 3: 907-914Google Scholar
  29. Gilbert C, Atlan D, Portalier R, Germond GJ, Lapierre L & Mollet B (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J. Bacteriol. 78: 3059-3065Google Scholar
  30. Gilbert C, Blanc B, Frot-Coutaz J, Portalier R & Atlan D (1997) Comparison of cell surface proteinase activities within the Lactobacillus genus. J. Dairy Res. 64: 561-571Google Scholar
  31. Goward CR, Scawen MD, Murphy JP & Atkinson T (1993) Molecular evolution of bacterial cell-surface proteins. Trends Biochem. Sci. 18: 136-140Google Scholar
  32. Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Konings WN & Venema G (1989) Identification of a gene required for maturation of an extracellular lactococcal serine proteinase. J. Bacteriol. 171: 2789-2794Google Scholar
  33. Haandrikman AJ, Kok J & Venema G (1991) Lactococcal proteinase maturation protein PrtM is a lipoprotein. J. Bacteriol. 173: 4517-4525Google Scholar
  34. Hardie JM & Wiley RA (1994) The genus Streptococcus. In: Wood BJB & Holzapfel WH (Eds) The Lactic Acid Bacteria vol. 2, The Genera of Lactic Acid Bacteria, Blackie Academic and Professional, London, pp. 55-124Google Scholar
  35. Heringa J, Argos P, Egmond MR & de Vlieg J (1995) Increasing thermal stability of subtilisin from mutations suggested by strongly interacting side-chain clusters. Protein Eng. 8: 21-30Google Scholar
  36. Holck A & Naes H (1992) Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO 151. J. Gen. Microbiol. 138: 1353-1364Google Scholar
  37. Hugenholtz J, van Sinderen D, Kok J & Konings WN (1987) Cell wall-associated proteases of Streptococcus cremoris Wg2. Appl. Environm. Microbiol. 53: 853-859Google Scholar
  38. Jain SC, Shinde U, Yuyan L, Inouye M & Berman H. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex al 2.0 Å resolution. J.Mol. Biol. 284: 137-144Google Scholar
  39. Jacobs M, Andersen JB, Kontinen V & Sarvas M (1993) Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without prosequences. Mol. Microbiol. 8: 957-966Google Scholar
  40. King RD & Sternberg MJE (1999) Identification and application of concepts important for accurate and reliable protein secondary structure prediction. Protein Science, in pressGoogle Scholar
  41. Kiwaki M, Ikemura H, Shimizu-Kadota M & Hirashima A (1989) Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCDO763. Molec. Microbiol. 3: 359-369Google Scholar
  42. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P & Krieger M (1990) Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343: 531-535Google Scholar
  43. Kok J (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87: 15-42Google Scholar
  44. Kok J & Venema G (1988) Genetics of proteinases in lactic acid bacteria. Biochimie 70: 475-488Google Scholar
  45. Kok J & de Vos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ & de Vos WM (Eds) Genetics and Biotechnology of Lactic Acid Bacteria Blackie and Professional, London, pp. 169-210Google Scholar
  46. Kok J, Leenhouts KJ, Haandikman AJ, Ledeboer AM & Venema G (1988) Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. and Environm. Microbiol. 54: 231-238Google Scholar
  47. Kok J, Hill D, Haandrikman AJ, de Reuver MJB, Laan H & Venema G (1988) Deletion analysis of the proteinase gene of Streptococcus cremoris Wg2. Appl Environm Microbiol 54: 239-244Google Scholar
  48. Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Ant. van Leeuwenhoek 70: 187-221Google Scholar
  49. Laan H & Konings WN (1989) The mechanism of protein release from Lactococcus lactis subspecies cremoris Wg2. Appl. Environm. Microbiol. 55: 3103-3106Google Scholar
  50. Laloi P, Atlan D, Blanc B, Gilbert C & Portalier R (1991) Cell-wall associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ397: differential extraction, purification and properties of the enzyme. Appl. Environm. Microbiol. 36: 196-204Google Scholar
  51. Lupas A (1996a) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375-382Google Scholar
  52. Lupas A (1996b) Prediction and analysis of coiled-coil structures. Meth Enzymology 266: 513-525Google Scholar
  53. Margot P & Karamata D (1996) The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiol. 142: 3437-3444Google Scholar
  54. Martín-Hernández MC, Ailing AC & Exterkate FA (1994) Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl. Microbiol. Biotechnol. 40: 828-834Google Scholar
  55. Matuschek M, Burchhardt G, Sahm K & Bahl H (1994) Pullalanase of Thermoanaerobacterium thermosulphurigenes EM1 (Clostridium thermosulphurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J. Bacteriol. 176: 3295-3302Google Scholar
  56. Mierau I, Kunji ERS, Venema G & Kok J (1997) Casein and peptide degradation in lactic acid bacteria. Biotechn. Gen. Engin. Rev. 14: 279-301Google Scholar
  57. Mills OE & Thomas TD (1981) Nitrogen sources for growth of lactic streptococci in milk. N.Z. J. Dairy Sci. Technol. 16: 43-55Google Scholar
  58. Molinari M & Carafoli E (1997) Calpain: A cytosolic proteinase active at the membranes. J. Membrane Biol. 156: 1-8Google Scholar
  59. Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327: 625-635Google Scholar
  60. Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring al the LPXTG motif of surface proteins in Gram-positive bacteria. Mol. Micobiol. 14: 115-121Google Scholar
  61. Nissen-Meyer J, Lillehaug D & Nes IF (1992) The plasmid-encoded lactococcal envelope-associated proteinase is encoded by a chromosomal gene in Lactococcus lactis subsp. cremoris BC 101. Appl. and Environm. Microbiol. 58: 750-753Google Scholar
  62. Pearson WR & Lipman DJ (1988) Improved tools for biological sequence comparison. Proc. Nail. Acad. Sci. USA 85: 2444-2448Google Scholar
  63. Perona JJ & Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Science 4: 337-360Google Scholar
  64. Podbielski A, Flosdorff A & Weber-Heynemann J (1995) The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect. and Immun. 63: 9-20Google Scholar
  65. Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179-206Google Scholar
  66. Rahfeld JU, Rucknagel KR, Schelbert B, Ludwig B, Hacker J, Mann K & Fischer G (1994) Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. FEBS Letters 352:180-184Google Scholar
  67. Rost B & Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584-599Google Scholar
  68. Rost B & Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55-77Google Scholar
  69. Rudd KE, Sofia JH, Koonin EV, Plunkett G III, Lazar S & Rouviere PE (1995) A new family of peptidyl-prolyl isomerases. Trends Biochem. Sci. 20: 12-14Google Scholar
  70. Sankaran K & Wu HC (1994) Lipid modification of bacterial lipoprotein: transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269: 19701-19706Google Scholar
  71. Schmidt BF, Woodhouse L, Adams RM, Ward T, Mainzer SE & Lad PJ (1995) Alkalophilic Bacillus sp. strain LG12 has a series of serine protease genes. Appl. Environm. Microbiol. 61: 4490-4493Google Scholar
  72. Siezen RJ, de Vos WM, Leumssen JAM & Dijkstra BW (1991) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteases. Protein Engin. 4: 719-737Google Scholar
  73. Siezen RJ, Bruinenberg PG, Vos P, van Alen-Boerrigter IJ, Nijhuis M, Alting AC, Exterkate FA, de Vos WM (1993) Engineering of the substrate binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Engin. 6: 927-937Google Scholar
  74. Siezen RJ, Leunissen JAM & Shinde U (1995) Homology analysis of the propeptides of subtilisin-like serine proteases (subtilases). In: Shinde, U, (Ed) Intramolecular Chaperones and Folding, R.G. Landes Company, pp 231-253Google Scholar
  75. Siezen RJ & Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Prot. Science 6: 501-523Google Scholar
  76. Simpson WJ, LaPenta D, Chen C & Cleary PP (1990) Coregulation of type 12m protein and streptococcal C5a peptidase genes in group A streptococci: evidence for a virulence regulon controlled by the virR Locus. J. Bacteriol. 172: 696-700Google Scholar
  77. Sleytr UB & Sara M (1997) Bacterial and arcaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotech. 15: 20-26Google Scholar
  78. Sloma A, Ally A, Ally D & Pero J (1988) Gene encoding a minor extracellular protease ofBacillus subtilis. J Bacteriol. 170: 5557-5563Google Scholar
  79. Smid EJ, Poolman B & Konings WN (1991) Casein utilization by lactococci. Appl. Environm. Microbiol. 57: 2447-2452Google Scholar
  80. Stefanitsi D, Sakellaris G & Garel J-R (1995) The presence of two proteinases associated with the cell wall of Lactobacillus bulgaricus. FEMS Microbiol. Lett. 128: 53-58Google Scholar
  81. Strauss A & Götz F (1996) In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21: 491-500Google Scholar
  82. Suzuki K (1987) Calcium-activated neutral protease: domain structure and activity regulation. Trends Biochem. Sci. 12: 103-105Google Scholar
  83. Tan PST, Poolman B & Konings WN (1993) Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 60: 269-286Google Scholar
  84. Ven WJM van de, Roebroek AJM, van Duijnhoven HLP (1993) Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit. Rev. Oncogenesis 4: 115-136Google Scholar
  85. Visser S, Exterkate FA, Slangen CJ & de Veer GJCM (1986) Comparative study of action of cell wall proteinase from various strains of Streptococcus cremoris on bovine α s1-, β-and κ-casein. Appl. Environ. Microbiol. 52: 1162-1166Google Scholar
  86. Vos P, Simons G, Siezen RJ & deVos WM (1989a) Primary structure and organization of the gene for a prokaryotic cell envelope-located serine proteinase. J. Biol. Chem. 264: 13579-13585Google Scholar
  87. Vos P, van Asseldonk M, van Jeveren F, Siezen RJ, Simons G & deVos WM (1989b) A maturation protein is essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J. Bacteriol. 171:2795-2802Google Scholar
  88. Vos P, Boerrigter IJ, Buist G, Haandrikman AJ, Nijhuis M, de Reuver MB, Siezen RJ, Venema G, de Vos WM & Kok J (1991) Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes. Protein Eng. 4: 479-484Google Scholar
  89. Wells JM, Chamberlain RLM, Schofield KM & Le Page RWF (1996) Lactic acid bacteria as vaccine delivery vehicles. Ant. Van Leeuwenhoek 70: 317-330Google Scholar
  90. Wexler DE, Chenoweth DE & Cleary PP (1985) Mechanism of action of group A streptococcal C5a inactivator. Proc.Natl. Acad. Sci. USA 82: 8144-8148Google Scholar
  91. Yother J & Briles DE (1992) Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174: 601-609Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Roland J. Siezen
    • 1
    • 2
  1. 1.NIZO food researchEdeThe Netherlands
  2. 2.Wageningen Centre for Food SciencesWageningenThe Netherlands

Personalised recommendations