Advertisement

Antonie van Leeuwenhoek

, Volume 76, Issue 1–4, pp 115–137 | Cite as

Acquired antibiotic resistance in lactic acid bacteria from food

  • Michael Teuber
  • Leo Meile
  • Franziska Schwarz
Article

Abstract

Acquired antibiotic resistance, i.e. resistance genes located on conjugative or mobilizable plasmids and transposons can be found in species living in habitats (e.g. human and animal intestines) which are regularly challenged with antibiotics. Most data are available for enterococci and enteric lactobacilli. Raw material from animals (milk and meat) which are inadvertantly contaminated with fecal matters during production will carry antibiotic resistant lactic acid bacteria into the final fermented products such as raw milk cheeses and raw sausages. The discovered conjugative genetic elements of LAB isolated from animals and food are very similar to elements studied previously in pathogenic streptococci and enterococci, e.g. θ-type replicating plasmids of the pAMβ1, pIP501-family, and transposons of the Tn916-type. Observed resistance genes include known genes like tetM, ermAM, cat, sat and vanA. A composite 29'871 bp resistance plasmid detected in Lactococcus lacti s subsp. lactis isolated from a raw milk soft cheese contains tetS previously described in Listeria monocytogenes, cat and str from Staphylococcus aureus. Three out of five IS elements on the plasmid are almost or completely identical to IS1216 present in the vanA resistance transposon Tn1546. These data support the view that in antibiotic challenged habitats lactic acid bacteria like other bacteria participate in the communication systems which transfer resistance traits over species and genus borders. The prevalence of such bacteria with acquired resistances like enterococci is high in animals (and humans) which are regularly treated with antibiotics. The transfer of antibiotic resistant bacteria from animals into fermented and other food can be avoided if the raw substrate milk or meat is pasteurized or heat treated. Antibiotic resistance traits as selectable markers in genetic modification of lactic acid bacteria for different purposes are presently being replaced, e.g. by metabo lic traits to generate food-grade vectors.

antibiotic resistance Lactobacillus Lactococcus Entrococcus food 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn C, Collins-Thompson D, Duncan C & Stiles ME (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid 27: 169-176Google Scholar
  2. Ainsa JA, Blokpoel MCJ, Otal I, Young DB, de Smet KAL & Martin C (1998) Molecular doing and characterization of tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J. Bacteriol. 180: 5836-5843Google Scholar
  3. Antony SJ, Stratton CW & Dummer JS (1996) Lactobacillus bacteremia: description of the clinical course in adult patients without endocarditis. Clin. Infect. Dis. 23: 773-778Google Scholar
  4. Aarestrup FM, Eager F, Jensen NE, Madsen M, Meyling A & Wegener HC (1998) Resistance to antimicrobial agents used for animal therapy in pathogenic-, zoonotic-and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). APMIS 106: 745-770Google Scholar
  5. Arthur M & Courvalin P (1994) Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37: 1563-1571Google Scholar
  6. Baquero F, Negir MC, Morosini MI & Blazquez J (1997) The antibiotic selection process: concentration-specific amplification of low-level resistant populations. In: Antibiotic Resistance. Origins, evolution, selection and spread (pp. 87-105). Chadwick DJ & Goode J (Eds.) John Wiley & Sons, ChichesterGoogle Scholar
  7. Bates J, Jordens Z & Selkon JB (1993) Evidence for an animal origin of vancomycin-resistant enterococci. The Lancet 342: 490-49Google Scholar
  8. Batish VK & Ranganathan B (1986) Antibiotic susceptibility of deoxyribonuclease-positive enterococci isolated from milk and milk products and their epidemiological significance. Int. J. Food Microbiol. 16: 203-206Google Scholar
  9. Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A & Skurray R A (1998) Complete nucleotide sequence of pSK41: Evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180: 4350-4359Google Scholar
  10. Bolhuis H, Poelarends G, van Veen HW, Poolman B, Driessen AJM & Konings WN (1995) The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem. 270: 26092-26098Google Scholar
  11. Brockmann E, Jacobsen BL, Hertel C, Ludwig W, Schleifer KH (1998) Monitoring of genetically modified Lactococcus lactis in gnotobiotic and conventional rats by using antibiotic resistance markers and specific probe or primer based methods. System. Appl. Microbiol. 19: 203-212Google Scholar
  12. Celli J & Trieu-Cuot P (1998) Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28: 103-117Google Scholar
  13. Charpentier E, Gerbaud G & Courvalin P (1994) Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis. Antimicrob. Agents Chemother. 38: 2330-2335Google Scholar
  14. Charpentier E, Gerbaud G, Jacquet C, Rocourt J & Courvalin P (1995) Incidence of antibiotic resistance in Listeria species. J. Infect. Dis. 172: 277-281Google Scholar
  15. Charteris WP, Kelly PM, Morelli L & Collins JK (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 26: 333-337Google Scholar
  16. Clewell DB (1994) Bacterial Conjugation (DB Clewell, Ed.). Plenum Press, New YorkGoogle Scholar
  17. Clewell DB, Flannagan SE & Jaworsky DD (1995) Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3: 229-236Google Scholar
  18. Climo M, Sharma VK & Archer GL (1996) Identification and characterization of the origin of conjugative transfer (oriT) and gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J. Bacteriol. 178: 4975-4983Google Scholar
  19. Corpet EE (1988) Antibiotic resistance from food (letter). New England J. Med. 318: 1206-1067Google Scholar
  20. Curragh HJ & Collins MA (1992) High levels of spontaneous drug resistance in Lactobacillus. J. Appl. Bacteriol. 73: 31-36Google Scholar
  21. Davies JE (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375-382Google Scholar
  22. Davies JE (1997) Origins, acquisition and dissemination of antibiotic resistance determinants. In: Chadwick DJ & Goode J (Eds.) Antibiotic Resistance. Origins, evolution, selection and spread (pp. 15-27). John Wiley & Sons, ChichesterGoogle Scholar
  23. De Fabrizio SV, Parada JL & Ledford RA (1994) Antibiotic resistance of Lactococcus lactis — an approach of genetic determinants location through a model system. Microbiologie-Aliments-Nutritions 12: 307-315Google Scholar
  24. Dellaglio F, Dicks LMT & Torriani S (1995) The genus Leuconostoc. In: Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 235-278). Blackie Academic & Professional, LondonGoogle Scholar
  25. Dessart SR & Steenson LR (1991) High frequency intergeneric and intrageneric conjugal transfer of drug resistance plasmids in Leuconostoc mesenteroides ssp. cremoris. J. Dairy Sci. 74: 2912-2919Google Scholar
  26. Devriese LA & Pot B (1995) The genus Enterococcus. In: Wood BJB and Holzapfel WH (Eds.) The genera of lactic acid bacteria (pp. 327-367). Blackie Academic & Professional, LondonGoogle Scholar
  27. De Vos WM & Simons GFM (1994) Gene cloning and expression systems in Lactococci. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 52-105). Blackie Acadmic & Professional, LondonGoogle Scholar
  28. Dodd HM, Horn N, Gasson MJ (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136: 555-566Google Scholar
  29. Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A & Courvalin P (1991) Inducible transfer of conjugative Transposon Tn1545 fromEnterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents & Chemother. 35: 185-187Google Scholar
  30. Dougherty BA, Hill C, Weidman JF, Richardson DR, Venter JC & Ross RP (1998) Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 29: 1029-1038Google Scholar
  31. Elisha BG & Courvalin P (1995) Analysis of genes encoding D-alanine: D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152: 79-83Google Scholar
  32. Elmer GW, Surawics ChM & McFarland LV (1996) Biotherapeutic agents. A neglected modality for the treatment and prevention of selected intestinal and vaginal infections. J. Am. Med. Assoc. 275: 870-876Google Scholar
  33. Falkiner FR (1998) The consequences of antibiotic use in horticulture. J. Antimicrob. Chemother. 41: 429-431Google Scholar
  34. Flannagan SE, Zitzow LA, Su YA & Clewell DB (1994) Complete nucleotide sequence of the 18-kb conjugative transposon Tn916 fromEnterococcus faecalis. Plasmid 32: 350-354Google Scholar
  35. Foley S, Bron S, Venema G, Daly C & Fitzgerald GF (1996) Molecular analysis of the replication origin of the Lactococcus lactis plasmid pCI305. Plasmid 36: 125-141Google Scholar
  36. Fons M, Hégé T, Ladiré M, Raibaud P, Ducluzeau R & Maguin E (1997) Isolation and characterization of a plasmid from Lactobacillus fermentum conferring erythromycin resistance. Plasmid 37: 199-203Google Scholar
  37. François B, Charles M & Courvallin P (1997) Conjugative transfer of tet(S) between strains of Enterococcus faecalis is associated with the exchange of large fragments of chromosomal DNA. Microbiology 143: 2145-2154Google Scholar
  38. Gasson MJ & Davies FL (1980) Conjugal transfer of the drug resistance plasmid pAM/β1 in the lactic streptococci. FEMS Microbiol. Lett. 7: 51-53Google Scholar
  39. Gasson MJ & Fitzgerald GF (1994) Gene transfer systems and transposition. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 1-51). Blackie Academic & Professional, LondonGoogle Scholar
  40. Giraffa G, Carminati D & Neviani E (1997) Enterococci isolated from dairy products: a review of risks and potential technological use. J. Food Protect. 60: 732-738Google Scholar
  41. Grüneberg RN & Hryniewicz W (1998) Clinical relevance of a European collaborative study on comparative susceptibility of Gram-positive clinical isolates to teichoplanin and vancomycin. Intern. J. Antimicrob. Ag. 10: 271-277Google Scholar
  42. Guédon G, Bourgoin F, Pébay M, Roussel Y, Colmin C, Simonet JM & Decaris B (1995) Characterization and distribution of two insertion sequences, IS1191 and iso-IS981, in Streptococcus thermophilus: does intergeneric transfer of insertion sequences occur in lactic acid bacteria co-cultures? Mol. Microbiol. 16: 69-78Google Scholar
  43. Guiney M & Urwin G (1993) Frequency and antimicrobial susceptibility of clinical isolates of enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 12: 362-366Google Scholar
  44. Hadorn K, Kayser FH & Hächler H (1994) Miniplasmid derived from Listeria monocytogenes multiresistance plasmid pWDB100 upon conjugal transfer into Staphylococcus epidermidis carries chloramphenicol resistance gene identical with staphylococcal gene. System. Appl. Microbiol. 17: 492-500Google Scholar
  45. Hadorn K, Hächler H, Schaffner A & Kayser FH (1993) Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 12: 928-937Google Scholar
  46. Hammerum AM, Jensen LB, Aarestrup FM (1998) Detectin of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol. Lett. 168: 145-151Google Scholar
  47. Handwerger S & Skoble J (1995) Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 39: 2446-2453Google Scholar
  48. Herrero M, Mayo B, Gonzales B & Suarez JE (1996) Evaluation of technologically important traits in lactic acid bacteria isolated from spontaneous fermentations. J. Appl. Bacteriol. 81: 565-570Google Scholar
  49. Huycke MM, Sahm DF & Gilmore MS (1998) Multiple-drug resistant enterococci: The nature of the problem and agenda for the future. Emerging Infect. Dis. 4: 239-249Google Scholar
  50. Janzen T, Kleinschmidt J, Neve H & Geis A (1992) Sequencing and characterization of pST1, a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol. Lett. 95: 175-180Google Scholar
  51. Jensen LB, Fridmodt-Moller N & Aarestrup FM (1999) Presence of erm gene classes in Gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. Lett. 170: 151-158Google Scholar
  52. Jensen LB (1998) Internal variations in Tn1546-like elements due to the presence of IS1216V. FEMS Microbiol. Lett. 169: 349-354Google Scholar
  53. Jett BD, Huycke M & Gilmore MS (1994) Virulence of enterococci. Clin. Microbiol. Rev. 7: 462-478Google Scholar
  54. Khan E, Mack JPG, Katz RA, Kulkosky J & Skalka AM (1990) Retroviral integrase domain: DNA binding and the recognition of LTR sequences. Nucleic Acids Research 19: 851-861Google Scholar
  55. Kilpper-Bälz R, Fischer G & Schleifer K-H (1982) Nucleic acid hybridization of group D streptococci. Curr. Microbiol. 7: 245-250Google Scholar
  56. Klaenhammer TR & Sutherland SM (1980) Detection of plasmid deoxyribonucleic acid in an isolate of Lactobacillus acidophilus. Appl. Environ. Microbiol. 39: 671-674Google Scholar
  57. Klare I, Heier H, Claus H, Böhme G, Marin S, Seltmann G, Hakenbeck R, Altanassova V & Witte W (1995) Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb. Drug Resistance 1: 265-272Google Scholar
  58. Klare I, Heier H, Claus H, Reissbrodt R & Witte W (1995) vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125: 165-172Google Scholar
  59. Klein G, Pack A & Reuter G (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol. 64: 1825-1830Google Scholar
  60. Kleinschmidt J, Seeding B, Teuber M & Neve H (1993) Evaluation of horizontal and vertical gene transfer and stability of heterologous DNA in Streptococcus thermophilus isolated from yogurt and yogurt starter cultures. System. Appl. Microbiol. 16: 287-295Google Scholar
  61. Knudtson LM & Hartman PA (1993) Antibiotic resistance among enterococci isolates from environmental and clinical sources. J. Food Protect. 56: 489-492Google Scholar
  62. Kullen MJ & Klaenhammer TR (1999) Genetic Modification of Intestinal Lactobacilli and Bifidobacteria. In: Tannock GW (Ed.) Probiotics, a critical review (pp. 65-83). Horizon Scientific Press, WymondhamGoogle Scholar
  63. Leenhouts K, Bolhuis A, Venema G, Kok J (1998) Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biotechnol. 49: 417-423Google Scholar
  64. Levy SB (1997) Antibiotic resistance: An ecological imbalance. In: Chadwick DJ & Goode J (Eds.) Antibiotic Resistance. Origins, evolution, selection and spread (pp. 1-14). John Wiley & Sons, ChichesterGoogle Scholar
  65. Liassine N, Frei R, Jan I & Auckenthaler R (1998) Characterization of glycopeptide-resistant enterococci from a Swiss hospital. J. Clin. Microbiol. 36: 1853-1858Google Scholar
  66. Lin ChF, Fung ZF, Wu ChL & Chung TCh (1996) Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-IC) from Lactobacillus reuteri G4. Plasmid 36: 116-124Google Scholar
  67. Marra D & Scott JR (1999) Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31: 609-621Google Scholar
  68. Macrina FL & Archer GL (1993) Conjugation and broad host range plasmids in streptococci and staphylococci. In: Clewell DB, (Ed.) Bacterial Conjugation (pp. 313-368). Plenum Press, New YorkGoogle Scholar
  69. McDonald LC, Kuehnert MJ, Tenover FC & Jarvis WR (1997) Vancomycin-resistant enterococci outside the health-care setting: prevalence, sources, and public health implications. Emerging Infect. Dis. 3: 311-317Google Scholar
  70. McKay L Funcional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek 49: 259-274Google Scholar
  71. Mercenier A, Pouwels PH & Chassy BM (1994) Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus. In: Gasson MJ & de Vos WM (Eds.) Genetics and Biotechnology of Lactic Acid Bacteria (pp. 252-293). Blackie Academic & Professional, LondonGoogle Scholar
  72. Ministry of Agriculture and Forestry (Finland) (1997) Tylosin and spiramycin as feed additives — Influence on the efficacy of therapeutic macrolides, Report from the Republic of Finland according to article 29 of the treaty between Member States of the European Union and the Republic of Finland on the scientific arguments for the adaptation to prohibit the use of tylosin and spiramycin as feed additives in animal nutrition by the National Veterinary and Food Research Institut (EELA) (E. Tast, T Honkanen-Buzalski & P Mannerkop, Eds.). Publications of Ministry of Agriculture and Forestry 5/1997, HelsinkiGoogle Scholar
  73. Ministry of Agriculture, Fisheries and Food (UK) (1998) A review of antimicrobial resistance in the food chain, July 1998. A technical report for MAFF. MAFF Publications, LondonGoogle Scholar
  74. Ministry of Agriculture (Sweden), Government Official Reports 132 (1997) Antimicrobial feed additives. Report from the Commission on Antimicrobial Feed Additives. Norsteedts Tryckeri AG., StockholmGoogle Scholar
  75. National Research Council & Institute of Medicine (1998) The use of drugs in food animals: benefits and risks. National Academy Press, WashingtonGoogle Scholar
  76. Neu HC (1992) The crisis in antibiotic resistance. Science 257: 1064-1973Google Scholar
  77. Neve H, Geis A & Teuber M (1987) Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starter cultures. System. Appl. Microbiol. 9: 151-157Google Scholar
  78. Noble WC, Virani Z & Cree RGA (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93: 195-198Google Scholar
  79. Orberg PK & Sandine WE (1985) Survey of antimicrobial resistance in lactic streptococci. Appl. Environ. Microbiol. 49: 538-542Google Scholar
  80. Pechmann H & Teuber M (1980) Plasmid pattern of Group N (lactic) Streptococci. Zbl. Bakt. I. Orig. C1: 133-136Google Scholar
  81. Perreten V, Kollöffel B & Teuber M (1997a) Conjugal transfer of the Tn916-like transposon TnFO1 from Enterococcus faecalis isolated from cheese to other Gram-positive bacteria. System. Appl. Microbiol. 20: 27-38Google Scholar
  82. Perreten V, Schwarz F, Cresta L, Boeglin M, Dasen G & Teuber M (1997b) Antibiotic resistance spread in food. Nature 389: 801-802Google Scholar
  83. Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL & Courvalin P (1990) Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. The Lancet 335: 1422-1426Google Scholar
  84. Quednau M, Ahrne S, Petersson AC & Molin G (1998) Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J. Appl. Microbiol. 84: 1163-1170Google Scholar
  85. Reilly A & Käferstein F (1997) Food safety hazards and the application of the principles of the hazard analysis and critical control point (HACCP) system for their control in aquaculture production. Aquaculture Res. 28: 735-752Google Scholar
  86. Rice LB & Carias LL (1997) Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J. Bacteriol. 180: 714-721Google Scholar
  87. Rice LB (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42: 1871-1877Google Scholar
  88. Rinckel LA & Savage DC (1990) Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacillus sp. strains. Plasmid 23: 100-133Google Scholar
  89. Rollins LR, Lee LN & LeBlanc DJ (1985) Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptococci isolated from pigs, chickens, and humans. Antimicrob. Agents Chemother. 27: 439-444Google Scholar
  90. Sami M, Yamashita H, Hirono T, Kadokura H, Kitamoto K, Yoda K & Yamasaki M (1997) Hop-resistant Lactobacillus brevis contains novel plasmid harboring a multidrug resistance-like gene. J. Fermentation & Bioengineering 84: 1-6Google Scholar
  91. Schäfer A, Jahns A, Geis A & Teuber M (1991) Distribution of the IS elements ISS1 and IS904 in lactococci. FEMS Microbiology Letters 80: 311-318Google Scholar
  92. Schleifer KH & Ludwig W (1995) Phylogenetic relationships of lactic acid bacteria. In: Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 7-18). Blackie Academic & Professional, LondonGoogle Scholar
  93. Schmalreck AF, Teuber M, Reininger W & Hartl A (1975) Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Canad. J. Microbiol. 21: 205-212Google Scholar
  94. Schmieger H & Schicklmaier P (1999) Transduction of multiple drug resistance of Salmonella enterica serovar thyphimurium DT104. FEMS Microbiol. Lett. 170: 251-256Google Scholar
  95. Schwarz F, Perreten V & Teuber M (1999) Mef214, a putative efflux protein, of Lactococcus lactis subsp. lactis K214 conferring increased macrolide resistance in Escherichia coli. (paper submitted).Google Scholar
  96. Scott JR (1992) Sex and the single circle: conjugative transposition. J. Bacteriol. 174: 6005-6010Google Scholar
  97. Sgorbati B, Biavati B & Palenzona D (1995) The genus Bifidobacterium. In: Wood BJB & Holzapfel WH (Eds.). The Genera of Lactic Acid Bacteria (pp. 279-306). Blackie Academic & Professional, LondonGoogle Scholar
  98. Sievers M, Teuber M, Wirsching F, Perreten V, Eisenring R, Fähndrich P, Schlaepfer S, Krusch U, Simm Ch & Löhmer A (1993) Antibiotic resistance properties of enterococci and staphylococci from fermented food. FoodMicro '93, Book of Abstracts (pp. 191)Google Scholar
  99. Simpson WJ, Hammond JRM & Miller RB (1988) Avoparcin and vancomycin: Useful antibiotics for the isolation of brewery lactic acid bacteria. J. Appl. Bacteriol. 64: 299-310Google Scholar
  100. Simpson WJ & Taguchi H (1995) The genus Pediococcus with notes on the genera Tetratogenococcus and Aerococcus. In: The Genera of Lactic Acid Bacteria (pp. 125-172). Blackie Academic & Professional, LondonGoogle Scholar
  101. Soeding B, Kleinschmidt J, Teuber M & Neve H (1993) Assessment of abilities of conjugal transfer and stability of p AMβ1 in dairy lactobacilli with emphasis on thermophilic and nonstarter lactobacilli. System. Appl. Microbiol. 16: 296-302Google Scholar
  102. Sozzi T & Smiley MB (1980) Antibiotic resistances of yogurt starter cultures Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 40: 862-865Google Scholar
  103. Tannock GW (1987) Conjugal transfer of plasmid pAMβ1 in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Appl. Environ. Microbiol. 53: 2693-2695Google Scholar
  104. Tannock GW (1998) Probiotics. A critical review. Horizon Scientific Press, WymondhamGoogle Scholar
  105. Tannock GW, Luchansky JB, Miller L, Connell H, Thode-Andersen S, Mercer AA & Klaenhammer TR (1994) Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacilllus reuteri 100-163. Plasmid 31: 60-71Google Scholar
  106. Teuber M and Schmalreck AF (1973) Membrane leakage in Bacillus subtilis 168 induced by the hop constituents lupulone, humulone, isohumulone and humulinic acid. Arch. Mikrobiol. 94: 159-171Google Scholar
  107. Teuber M (1993) Lactic acid bacteria. In: J Rehm, Reed G, Pühler A & Stadler P (Eds.)'Biotechnology' Vol. 1, 2nd edition (pp. 326-365). Verlag Chemie, WeinheimGoogle Scholar
  108. Teuber M (1995) The genus Lactococcus. In Wood BJB & Holzapfel WH (Eds.) The Genera of Lactic Acid Bacteria (pp. 173-234). Blackie Academic & Professional, LondonGoogle Scholar
  109. Teuber M, Perreten V & Wirsching F (1996) Antibiotikumresistente Bakterien: eine neue Dimension in der Lebensmittelmikrobiologie. Lebensmittel-Technologie 29: 182-199Google Scholar
  110. Thai LA, Chow JW, Mahayni R, Bonilla H, Perri MB, Donabedia SA, Silverman J, Taber S & Zervos MJ (1995) Characterization of antimicrobial resistance in enterococci of animal origin. Antimicrob. Agents Chemother. 39: 2112-2115Google Scholar
  111. Trieu-Cuot P, de Cespédès G, Bentorcha F, Delbos F, Caspar E & Horaud T (1993) Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: Characterization of a new CAT determinant. Antimicrob. Agents Chemother. 37: 2593-2598Google Scholar
  112. Van den Braak N, van Belkum A, van Keulen M, Vliegenthart J, Verbrugh HA & Endtz HP (1998) Molecular characterization of vancomycin-resistant enterococci from hospitalized patients and poultry products in the Netherlands. J. Clin. Microbiol. 36: 1927-1932Google Scholar
  113. Van Veen HW & Konings WN (1998) The ABC family of multidrug transporters in microorganisms. Biochim. Biophys. Acta 1365, 31-36Google Scholar
  114. Vescovo M, Morelli L & Bottazzi V (1982) Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Appl. Environ. Microbiol. 43: 50-56Google Scholar
  115. Von Wright A & Räty K (1993) The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett. Appl. Microbiol. 17: 25-28Google Scholar
  116. Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87-115Google Scholar
  117. WHO (1997) The medical impact of the use of antimicrobials in food animals. Report of a WHO Meeting, Berlin, Germany, 13-17 October 1997. WHO, GenevaGoogle Scholar
  118. Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279: 996-997Google Scholar
  119. Wu K, An FY & Clewell DB (1999) Enterococcus faecalis Pheromone-responding plasmid pAD1 gives rise to an aggregation (clumping) response when cells are exposed to subinhibitory concentrations of chloramphenicol, erythromycin or tetracycline. Plasmid 41: 82-88Google Scholar
  120. Wüst J, Zbinden R & Kayser FH (1998) Die Empfindlichkeit von Bakterien gegen Chemotherapeutika (Zürich 1996). Praxis 87: 403-412Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Michael Teuber
    • 1
  • Leo Meile
    • 1
  • Franziska Schwarz
    • 1
  1. 1.Laboratory of Food MicrobiologySwiss Federal Institute of Technology, ETH-ZentrumZurichSwitzerland

Personalised recommendations