Boundary-Layer Meteorology

, Volume 93, Issue 3, pp 341–380

A GCSS Boundary-Layer Cloud Model Intercomparison Study Of The First Astex Lagrangian Experiment

  • Christopher S. Bretherton
  • Steven K. Krueger
  • Matthew C. Wyant
  • Peter Bechtold
  • Erik Van Meijgaard
  • Bjorn Stevens
  • Joao Teixeira
Article

Abstract

Three single-column models (all with an explicit liquid water budget and compara-tively high vertical resolution) and three two-dimensional eddy-resolving models (including one with bin-resolved microphysics) are compared with observations from the first ASTEX Lagrangian experiment. This intercomparison was a part of the second GCSS boundary-layer cloud modelling workshop in August 1995.

In the air column tracked during the first ASTEX Lagrangian experiment, a shallow subtropical drizzling stratocumulus-capped marine boundary layer deepens after two days into a cumulus capped boundary layer with patchy stratocumulus. The models are forced with time varying boundary conditions at the sea-surface and the capping inversion to simulate the changing environment of the air column.

The models all predict the observed deepening and decoupling of the boundary layer quite well, with cumulus cloud evolution and thinning of the overlying stratocumulus. Thus these models all appear capable of predicting transitions between cloud and boundary-layer types with some skill. The models also produce realistic drizzle rates, but there are substantial quantitative differences in the cloud cover and liquid water path between models. The differences between the eddy-resolving model results are nearly as large as between the single column model results. The eddy resolving models give a more detailed picture of the boundary-layer evolution than the single-column models, but are still sensitive to the choice of microphysical and radiative parameterizations, sub-grid-scale turbulence models, and probably model resolution and dimensionality. One important example of the differences seen in these parameterizations is the absorption of solar radiation in a specified cloud layer, which varied by a factor of four between the model radiation parameterizations.

Cloud-topped boundary layers Stratocumulus Drizzle Cloud-radiation feedback Entrainment Large-eddy simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, B. A.: 1989, ‘Aerosols, Cloud Microphysics and Fractional Cloudiness’, Science 245, 1227-1230.Google Scholar
  2. Albrecht, B. A., Bretherton, C. S., Johnson, D., Schubert, W., and Frisch, A. S.: 1995: ‘The Atlantic Stratocumulus Transition Experiment (ASTEX), Bull. Amer. Meteorol. Soc. 70, 889-903.Google Scholar
  3. Austin, P. H. and Bretherton, C. S.: 1997, ‘Broadband Radiative Fluxes during the ASTEX Lagrangian Experiments'. University of British Columbia Atmospheric Science Programme Technical Report No. 44, 33 pp. Available on WWW at ftp://ftp.geog.ubc.ca/atsci/reports, or from Dr. P. H. Austin, Atmospheric Science Programme, Geography 217, UBC, 1984 West Mall Vancouver, BC, V6T 1Z2, Canada.Google Scholar
  4. Bechtold, P., Krueger, S. K., Lewellen, W. S., van Meijgaard, E., Moeng, C.-H., Randall, D. A., van Ulden, A., and Wang, S.: 1996: ‘Modeling a Stratocumulus-Topped PBL: Intercomparisons among Different 1D Codes and with LES’, Bull. Amer. Meteorol. Soc. 77, 2033-2042.Google Scholar
  5. Bretherton, C. S., Austin, P. H., and Siems, S. T.: 1995: ‘Cloudiness and Marine Boundary Layer Dynamics in the ASTEX Lagrangian Experiments. Part II: Cloudiness, Drizzle, Surface Fluxes and Entrainment’, J. Atmos. Sci. 52, 2724-2735.Google Scholar
  6. Bretherton, C. S. and Pincus, R.: 1995, ‘Cloudiness and Marine Boundary Layer Dynamics in the ASTEX Lagrangian Experiments. Part I: Synoptic Setting and Vertical Structure’, J. Atmos. Sci. 52, 2707-2723.Google Scholar
  7. Bretherton, C. S., MacVean, M. K., and 14 coauthors, 1999: ‘An Intercomparison of Radiatively Driven Entrainment and Turbulence in a Smoke Cloud, as Simulated by Different Numerical Models’, Quart. J. Roy. Meteorol. Soc. 125, 391-423.Google Scholar
  8. CCM3, 1997: CCM3 Validation of Total Cloud, in the NCAR Community Climate Model WWW site (http://www.cgd.ucar.edu:80/cms/ccm3).Google Scholar
  9. Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for Use in General Circulation Models’, Mon. Wea. Rev. 100, 93-106.Google Scholar
  10. Del Genio, A. D., Yao, M.-S., Kovari, W., and Lo, K. K.-W.: 1996, ‘A Prognostic Cloud Water Parameterization for Global Climate Models’, J. Climate 9, 270-304.Google Scholar
  11. de Roode, S. R. and Duynkerke, P. G.: 1996, ‘Dynamics of Cumulus Rising into Stratocumulus as Observed during the First “Lagrangian” Experiment of ASTEX’, Quart. J. Roy. Meteorol. Soc. 122, 1597-1623.Google Scholar
  12. de Roode, S. R. and Duynkerke, P. G.: 1997, Observed Lagrangian Transition of Stratocumulus into Cumulus during ASTEX: Mean State and Turbulence Structure’, J. Atmos. Sci. 54, 2157-2173.Google Scholar
  13. Duynkerke, P. G., Zhang, H.-Q., and Jonker, P. J.: 1995, ‘Microphysical and Turbulent Structure of Nocturnal Stratocumulus during ASTEX’, J. Atmos. Sci. 52, 2763-2777.Google Scholar
  14. Fowler, L. and Randall, D. A.: 1996,'Liquid and Ice Microphysics in the CSU General Circulation Model. Part II: Impact on Cloudiness, The Earth's Radiation Budget, and the General Circulation of the Atmosphere’, J. Climate 9, 530-560.Google Scholar
  15. GEWEX Cloud System Science Team: 1993, ‘The GEWEX Cloud System Study (GCSS)’, Bull. Amer. Meteorol. Soc. 74, 387-399.Google Scholar
  16. Hartmann, D. L., Ockert-Bell, M. E., and Michelsen, M. L.: 1992, ‘The Effect of Cloud Type on the Earth's Energy Balance’, J. Climate 5, 1281-1304.Google Scholar
  17. Holtslag, A. A. M. and Boville, B. A.: 1993, ‘Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model’, J. Climate 6, 1825-1842.Google Scholar
  18. Klein, S. A. and Hartmann, D. L.: 1993, ‘The Seasonal Cycle of Low Stratiform Clouds’, J. Climate 6, 1587-1606.Google Scholar
  19. Krueger, S. K., McLean, G. T., and Fu, Q.: 1995, ‘Numerical Simulations of the Stratus to Cumulus Transition in the Subtropical Marine Boundary Layer. Part 1: Boundary Layer Structure’, J. Atmos. Sci. 52, 2839-2850.Google Scholar
  20. Martin, G. M., Johnson, D. W., Rogers, D. P., Jonas, P. R., Minnis, P., and Hegg, D. A.: 1995: ‘Observations of the Interaction between Cumulus Clouds and Warm Stratocumulus Clouds in the Marine Boundary Layer during ASTEX’, J. Atmos. Sci. 52, 2902-2922.Google Scholar
  21. McClatchey, R. A.: 1972, Optical Properties of the Atmosphere, Third Edition, U.S. Air Force Office of Research Publication AFCRL-72-0497.Google Scholar
  22. Moeng, C.-H., Cotton, W. R., Bretherton, C. S., Chlond, A., Khairoutdinov, M., Krueger, S., Lewellen, W. S., MacVean, M. K., Pasquier, J. R. M., Rand, H. A., Siebesma, A. P., Sykes, R. I., and Stevens, B.: 1996: ‘Simulation of a Stratocumulus-Topped PBL: Intercomparison among Different Numerical Codes’, Bull. Amer. Meteorol. Soc. 77, 261-278.Google Scholar
  23. Morcrette, J.-J., 1991: ‘Radiation and Cloud Radiative Properties in the ECMWF Forecasting System’, J. Geophys. Res. 96, 9121-9132.Google Scholar
  24. Pincus, R. and Baker, M. B.: 1994, ‘Effect of Precipitation on the Albedo Susceptibility of Marine Boundary Layer Clouds’, Nature 372, 250-252.Google Scholar
  25. Roeckner E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., and Windelband, M.: 1992, ‘Simulation of the Present-Day Climate with the ECHAM-model: Impact of Model Physics and Resolution’, Max-Planck Institute für Meteorologie, Report No. 93, Hamburg, 171 pp.Google Scholar
  26. Roeckner H., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Girogetta, M., Schlese, U., and Schulzweida, U.: 1996, ‘The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate’, Max-Planck Institute für Meteorologie, Report No. 218, Hamburg, 90 pp.Google Scholar
  27. Slingo, A. and Schrecker, H. M.: 1982, ‘On the Shortwave Radiative Properties of Stratiform Water Clouds’, Quart. J. Roy. Meteorol. Soc. 108, 407-426.Google Scholar
  28. Smith, R. N. B.: 1990, ‘A Scheme for Predicting Layer Clouds and their Water Content in a General Circulation Model’, Quart. J. Roy. Meteorol. Soc. 116, 435-460.Google Scholar
  29. Stevens, B.: 1996, On the Dynamics of Precipitating Stratocumulus, Ph.D. Dissertation, Colorado State University, Department of Atmospheric Science Paper 618, 140 pp.Google Scholar
  30. Stevens, B., Cotton, W. R., Feingold, G., and Moeng, C.-H.: 1998, ‘Large-Eddy Simulations of Strongly Precipitating, Shallow, Stratocumulus-Topped Boundary Layers’, J. Atmos. Sci. 55, 3616-3638.Google Scholar
  31. Sundquist, H.: 1978, ‘A Parameterization Scheme for Non-Convective Condensation Including Prediction of Cloud Water Content’, Quart. J. Roy. Meteorol. Soc. 104, 677-690.Google Scholar
  32. Sundqvist, H., Berge, E., and Kristjansson, J. E.: 1989, ‘Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model’, Mon. Wea. Rev. 117, 1641-1657.Google Scholar
  33. Tiedtke, M.: 1989, ‘A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models’, Mon. Wea. Rev. 117, 1780-1800.Google Scholar
  34. Tiedtke, M.: 1993, ‘Representation of Clouds in Large-Scale Models’, Mon. Wea. Rev. 121, 3040-3061.Google Scholar
  35. Tiedtke, M., Heckley, W. A., and Slingo, J.: 1988, ‘Topical Forecasting at ECMWF: The Influence of Physical Parametrization of the Mean Structure of Forecasts and Analyses’, Quart. J. Roy. Meteorol. Soc. 639-664.Google Scholar
  36. Wyant, M. C., Bretherton, C. S., Rand, H. A., and Stevens, D. E.: 1997, ‘Numerical Simulations and a Conceptual Model of the Subtropical Marine Stratocumulus to Trade Cumulus Transition’, J. Atmos. Sci. 54, 168-192.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Christopher S. Bretherton
    • 1
  • Steven K. Krueger
    • 2
  • Matthew C. Wyant
    • 3
  • Peter Bechtold
    • 4
  • Erik Van Meijgaard
    • 5
  • Bjorn Stevens
    • 6
  • Joao Teixeira
    • 7
  1. 1.University of WashingtonSeattleU.S.A
  2. 2.University of UtahU.S.A.
  3. 3.University of WashingtonSeattleU.S.A.
  4. 4.Laboratoire d'AerologieToulouseFrance
  5. 5.Royal Netherlands Meteorological InstituteDe BiltNetherlands
  6. 6.Colorado State UniversityFt. CollinsU.S.A.
  7. 7.ECMWFReadingEngland

Personalised recommendations