General Relativity and Gravitation

, Volume 32, Issue 9, pp 1777–1798 | Cite as

Gravitational-Recoil Effects on Fermion Propagation in Space-Time Foam

  • John Ellis
  • N. E. Mavromatos
  • D. V. Nanopoulos
  • G. Volkov


Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: δc/c ∼ −E/M. It has been suggested that Gamma-Ray Bursters may emit pulses of neutrinos at energies approaching 1019 eV: these would be observable only if M ≳ 1027 GeV.

Variable light velocity D-branes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V., and Sarkar, S. (1998). Nature 393, 763 and astro-ph/9810483.Google Scholar
  2. 2.
    Schaefer, B. (1999). Phys. Rev. Lett. 82, 4964.Google Scholar
  3. 3.
    Ellis, J., Farakos, K., Mavromatos, N. E., Mitsou, V. A., and Nanopoulos, D. V. astro-ph/9907340.Google Scholar
  4. 4.
    Biller, S. D., et al.(1999). Phys. Rev. Lett. 83, 2108.Google Scholar
  5. 5.
    Kaaret, P. (1999). Astron. Astrophys. 345, L32.Google Scholar
  6. 6.
    Ellis, J., Mavromatos, E., and Nanopoulos, D. V. (1999). Gen. Rel. Grav. 31, 1257; grqc/9904068, (2000). Gen. Rel. Grav. 32, 177; gr-qc/9909085 and references therein.Google Scholar
  7. 7.
    Wheeler, J. A. (1957). Ann. Phys. (NY) 2, 605; also in Relativity, Groups and Topology, eds. B. S. and C. M. de Witt eds. (Gordon and Breach, New York); Hawking, S. W. Nucl. Phys. B144, 349 (1978); Hawking, S. W., Page, D. N., and Pope, C. N. Phys. Lett. 86B, 175 (1979); Ellis, J., Hagelin, J., Nanopoulos, D., and Srednicki, M. Nuclear Phys. B241, 381 (1984); Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. Phys. Lett. B293, 37 (1992) and Lectures presented at the Erice Summer School, 31st Course: From Supersymmetry to the Origin of Space-Time, Ettore Majorana Centre, Erice July 1993 (World Scientific, Singapore), p. 1, hep-th/9403133; Garay, L. J. Int. J. Mod. Phys. A14, 4079 (1999); Amelino-Camelia, G. gr-qc/9910089 and references therein.Google Scholar
  8. 8.
    Gambini, R., and Pullin, J. (1999). Phys. Rev. D 59, 124021.Google Scholar
  9. 9.
    Ashtekar, A. gr-qc/9901023; Gaul, M., and Rovelli, C. gr-qc/9910079.Google Scholar
  10. 10.
    Greisen, K. (1966). Phys. Rev. Lett. 16, 748 (1966); Zatsepin, G. T., and Kuzmin, V. A. Pis'ma Zh. Exsp. Teor. Fiz. 4, 114 (1966).Google Scholar
  11. 11.
    Aslanides, E. et al.ANTARES Collaboration, astro-ph/9907432.Google Scholar
  12. 12.
    Waxman, E., and Bahcall, J., hep-ph/9909286.Google Scholar
  13. 13.
    Alfaro, J., Morales-Tecotl, H. A., and Urrutia, L. F., gr-qc/9909079.Google Scholar
  14. 14.
    Kopnin, N. B., and Volovik, G. E. (1998). Pis'ma Zh. Eksp. Teor. Fiz 67, 124 and references therein.Google Scholar
  15. 15.
    Dai, J., Leigh, R. G., and Polchinski, J. (1989). Mod. Phys. Lett. A4, 2073; Polchinski, J. (1995). Phys. Rev. Lett. 75, 184, and hep-th/9611050; Bachas, C. (1996). Phys. Lett. B374, 37.Google Scholar
  16. 16.
    Kogan, I. I., Mavromatos, N. E., and Wheater, J. F. (1996). Phys. Lett. B387, 483.Google Scholar
  17. 17.
    Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1998). Int. J. Mod. Phys. A12, 2639 (1997), and A13, 1059 (1998).Google Scholar
  18. 18.
    Mavromatos, N. E., and Szabo, R. (1999). Phys. Rev. D 59, 104018.Google Scholar
  19. 19.
    Gurarie, V. (1993). Nuclear Phys. B410, 535; Caux, J. S., Kogan, I. I., and Tsvelik, A. M. (1996). Nuclear Phys. B466, 444; Flohr, M. A. I. (1996). Int. J. Mod. Phys. A11, 4147; Gaberdiel, M. R., and Kausch, H. G. (1996). Nuclear Phys. B489, 293; Kogan, I. I., and Mavromatos, N. E. (1996). Phys. Lett. B375, 111; Rahimi-Tabar, M. R., Aghamohammadi, A., and Khorrami, M. (1997). Nuclear Phys. B497, 555; Kogan, I. I., Lewis, A., and Soloviev, O. A. (1998). Int. J. Mod. Phys. A13, 1345.Google Scholar
  20. 20.
    Ellis, J., Kanti, P., Mavromatos, N. E., Nanopoulos, D. V., and Winstanley, E. (1998). Mod. Phys. Lett. A13, 303.Google Scholar
  21. 21.
    David, F. (1988). Mod. Phys. Lett. A3, 1651; Dislter, J., and Kawai, H. (1989). Nuclear Phys. B321, 509.Google Scholar
  22. 22.
    Campbell-Smith, A., and Mavromatos, N. E., hep-th/9908139.Google Scholar
  23. 23.
    Aganagic, M., Popescu, C., and Schwarz, J. H. (1997). Phys. Lett. B393, 311 and Nuclear Phys. B495, 99.Google Scholar
  24. 24.
    Deser, S., and Puzalowski (1980). J. Phys. A13, 2501; Cecotti, S., and Ferrara, S. Phys. Lett. B187, 335. For recent discussions see: Gonorazky, S., NÚnez, C., Schaposnik, F. A., and Silva, G. hep-th/9805054; Ketov, S. hep-th/9809121; for a recent review in the context of Dbranes, see Tseytlin, A. A. hep-th/9908105, and references therein.Google Scholar
  25. 25.
    Shmakova, M. hep-th/9906239.Google Scholar
  26. 26.
    Stodolsky, L. astro-ph/9911167.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • John Ellis
    • 1
  • N. E. Mavromatos
    • 2
  • D. V. Nanopoulos
    • 3
    • 4
    • 5
  • G. Volkov
    • 1
    • 6
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Department of Physics, Wheatstone LaboratoryKing's College London, StrandLondonUnited Kingdom
  3. 3.Department of PhysicsTexas A & M UniversityCollege Station
  4. 4.Astroparticle Physics GroupHouston Advanced Research Center (HARC)Woodlands
  5. 5.Division of Natural SciencesAcademy of AthensAthensGreece
  6. 6.Institute for High-Energy PhysicsMoscow RegionRussia

Personalised recommendations