Behavior Genetics

, Volume 30, Issue 3, pp 171–182 | Cite as

MPTP Susceptibility in the Mouse: Behavioral, Neurochemical, and Histological Analysis of Gender and Strain Differences

  • Marco Sedelis
  • Katja Hofele
  • Georg W. Auburger
  • Sarah Morgan
  • Joseph P. Huston
  • Rainer K. W. Schwarting


To investigate the impact of strain and sex in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson's disease, C57BL/6 and BALB/c mice were treated with either systemic MPTP-HCl (4 × 15 mg/kg) or saline and were examined in a number of behavioral tests. Furthermore, neostriatal and ventral striatal monoamine contents were determined, and the numbers of tyrosine hydroxylase-immunostained cells were counted in the substantia nigra and ventral tegmental area. Open-field testing showed that locomotor activity was drastically reduced as an acute effect of MPTP in both strains; however, subsequent recovery to control levels was faster in BALB/c mice than in C57BL/6. Nest building also indicated strain-dependent effects, since it was delayed only in C57BL/6 mice treated with MPTP. The other tests (grip test, pole test, rotarod, elevated plus-maze), although partly sensitive for overall strain or gender differences, turned out not to be useful to compare MPTP effects in these two strains. Neurochemically, MPTP led to more severe neostriatal dopamine depletions in C57BL/6 (−85%) than in BALB/c mice (−58%). Histologically, a loss of tyrosine hydroxylase immunoreactivity (−25%) was observed only in the substantia nigra of C57BL/6 animals. Thus, our analysis consistently showed that the C57BL/6 mouse strain is more susceptible to MPTP than the BALB/c strain. Sex differences in MPTP sensitivity were not observed in our mice. The implications of these findings for the search for genes related to susceptibility to neurodegeneration are discussed.

MPTP C57BL/6 BALB/c behavior dopamine Parkinson's disease striatum substantia nigra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambrosio, S., Gerli, P., Perego, C., and Algeri, S. (1987). Different toxicity of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) on the nigrostriatal and mesolimbic pathways. Eur.J.Pharmacol. 133:239-241.Google Scholar
  2. Archer, J. (1973). Tests for emotionality in rats and mice: A review. Anim.Behav. 21:205-235.Google Scholar
  3. Bradbury, A. J., Costall, B., Jenner, P. G., Kelly, M. E., Marsden, C. D., and Naylor, R. J. (1986). The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal and limbic catecholamine neurones in white and black mice. Antagonism by monoamine oxidase inhibitors. Neuropharmacology 25:897-904.Google Scholar
  4. Colotla, V. A., Flores, E., Oscos, A., Meneses, A., and Tapia, R. (1990). Effects of MPTP on locomotor activity in mice. Neurotoxicol.Teratol. 12:405-407.Google Scholar
  5. Darvasi, A. (1998). Experimental strategies for the genetic dissection of complex traits in animal models. Nature Genet. 18:19-24.Google Scholar
  6. Dluzen, D. E., McDermott, J. L., and Liu, B. (1996). Estrogen alters MPTP-induced neurotoxicity in female mice: Effects on striatal dopamine concentrations and release. J.Neurochem. 66:658-666.Google Scholar
  7. Fink, J. S., and Reis, D. J. (1981). Genetic variations in midbrain dopamine cell number: Parallel with differences in responses to dopaminergic agonists and in naturalistic behaviors mediated by central depaminergic systems. Brain Res. 222:335-349.Google Scholar
  8. Franklin, K. B. J., and Paxinos, G. (1997). The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego.Google Scholar
  9. Fredriksson, A., and Archer, T. (1994). MPTP-induced behavioural and biochemical deficits: A parametric analysis. J.Neural Transm.Park.Dis.Dement.Sect. 7:123-132.Google Scholar
  10. Freyaldenhoven, T. E., and Ali, S. F. (1997). Role of heat shock proteins in MPTP-induced neurotoxicity. Ann.N.Y.Acad.Sci.USA 825:167-178.Google Scholar
  11. Freyaldenhoven, T. E., Ali, S. F., and Hart, R. W. (1995). MPTPand MPP(+)-induced effects on body temperature exhibit ageand strain-dependence in mice. Brain Res. 688:161-170.Google Scholar
  12. Furness, J. B., Llewellyn-Smith, I. J., Bornstein, J. C., and Costa, M. (1988). Chemical neuroanatomy and the analysis of neuronal circuitry in the enteric nervous system. In Björklund, A., Hökfelt, T., and Owman, C. (eds.), The Peripheral Nervous System. Elsevier, Amsterdam, pp. 161-218.Google Scholar
  13. Gainetdinov, R. R., Fumagalli, F., Jones, S. R., and Caron, M. G. (1997). Dopamine transporter is required for in vivo MPTP neurotoxicity: Evidence from mice lacking the transporter. J.Neurochem. 69:1322-1325.Google Scholar
  14. Gerlach, M., and Riederer, P. (1996). Animal models of Parkinson's disease: An empirical comparison with the phenomenology of the disease in man. J.Neural Transm. 103:987-1041.Google Scholar
  15. German, D. C., Nelson, E. L., Liang, C. L., Speciale, S. G., Sinton, C. M., and Sonsalla, P. K. (1996). The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration 5:299-312.Google Scholar
  16. Giovanni, A., Sieber, B. A., Heikkila, R. E., and Sonsalla, P. K. (1991). Correlation between the neostriatal content of the 1-methyl-4-phenylpyridinium species and dopaminergic neurotoxicity following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration to several strains of mice. J.Pharmacol.Exp.Ther. 257:691-697.Google Scholar
  17. Hallman, H., Olson, L., and Jonsson, G. (1984). Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur.J.Pharmacol. 97:133-136.Google Scholar
  18. Hochman, A., Sternin, H., Gorodin, S., Korsmeyer, S., Ziv, I., Melamed, E., and Offen, D. (1998). Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J.Neurochem. 71:741-748.Google Scholar
  19. Hoskins, J. A., and Davis, L. J. (1989). The acute effect on levels of catecholamines and metabolites in brain, of a single dose of MPTP in 8 strains of mice. Neuropharmacology 28:1389-1397.Google Scholar
  20. Hung, H. C., and Lee, E. H. (1996). The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP× toxicity: Role of BDNF gene expression. Mol.Brain Res. 41:14-26.Google Scholar
  21. Hung, H. C., and Lee, E. H. (1998). MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic.Biol.Med. 24:76-84.Google Scholar
  22. Huston, J. P., Nef, B., Papadopoulos, G., and Welzl, H. (1980). Activation and lateralization of sensorimotor field for perioral biting reflex by intranigral GABA agonist and by systemic apomorphine in the rat. Brain Res.Bull. 5:745-749.Google Scholar
  23. Jossan, S. S., Sakurai, E., and Oreland, L. (1989). MPTP toxicity in relation to age, dopamine uptake and MAO-B activity in two rodent species. Pharmacol.Toxicol. 64:314-318.Google Scholar
  24. Kilbourn, M., and Frey, K. (1996). Striatal concentrations of vesicular monoamine transporters are identical in MPTP-sensitive (C57BL/6) and-insensitive (CD-1) mouse strains. Eur.J.Pharmacol. 307:227-232.Google Scholar
  25. Kupsch, A., Gerlach, M., Pupeter, S. C., Sautter, J., Dirr, A., Arnold, G., Opitz, W., Przuntek, H., Riederer, P., and Oertel, W. H. (1995). Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuroreport 6:621-625.Google Scholar
  26. Kupsch, A., Sautter, J., Schwarz, J., Riederer, P., Gerlach, M., and Oertel, W. H. (1996). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res. 741:185-196.Google Scholar
  27. Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180-185.Google Scholar
  28. Matthews, R. T., Beal, M. F., Fallon, J., Fedorchak, K., Huang, P. L., Fishman, M. C., and Hyman, B. T. (1997). MPP× induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol.Dis. 4:114-121.Google Scholar
  29. Muthane, U., Ramsay, K. A., Jiang, H., Jackson-Lewis, V., Donaldson, D., Fernando, S., Ferreira, M., and Przedborski, S. (1994). Differences in nigral neuron number and sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57/bl and CD-1 mice. Exp.Neurol. 126:195-204.Google Scholar
  30. Ng, M. C., Iacopino, A. M., Quintero, E. M., Marches, F., Sonsalla, P. K., Liang, C. L., Speciale, S. G., and German, D. C. (1996). The neurotoxin MPTP increases calbindin-D28k levels in mouse midbrain dopaminergic neurons. Mol.Brain Res. 36:329-336.Google Scholar
  31. Nishi, K., Kondo, T., and Narabayashi, H. (1989). Difference in recovery patterns of striatal dopamine content, tyrosine hydroxylase activity and total biopterin content after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration: A comparison of young and older mice. Brain Res. 489:157-162.Google Scholar
  32. Ogawa, N., Hirose, Y., Ohara, S., Ono, T., and Watanabe, Y. (1985). A simple quantitative bradykinesia test in MPTP-treated mice. Res.Commun.Chem.Pathol.Pharmacol. 50:435-441.Google Scholar
  33. Platel, A., Strolin-Benedetti, M., and Guffroy, C. (1986). MPTP-induced decrease in motor activity in two strains of mice: Its reversal by different monoamine oxidase inhibitors (MAOIs). In Markey, S. P., Castagnoli, N., Jr., Trevor, A. J., and Kopin, I. J. (eds.), MPTP: A Neurotoxin Producing a Parkinsonian Syndrome, Academic Press, Orlando, FL, pp. 443-447.Google Scholar
  34. Przedborski, S., and Jackson-Lewis, V. (1998). Mechanisms of MPTP toxicity. Mov.Disord. 13 (Suppl. 1):35-38.Google Scholar
  35. Riachi, N. J., and Harik, S. I. (1988). Strain differences in systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice correlate best with monoamine oxidase activity at the blood-brain barrier. Life Sci. 42:2359-2363.Google Scholar
  36. Rozas, G., López-Martin, E., Guerra, M. J., and Labandeira-Garcia, J. L. (1998). The overall rod performance test in the MPTPtreated-mouse model of Parkinsonism. J.Neurosci.Meth. 83:165-175.Google Scholar
  37. Sanghera, M. K., Manaye, K. F., Liang, C. L., Iacopino, A. M., Bannon, M. J., and German, D. C. (1994). Low dopamine transporter mRNA levels in midbrain regions containing calbindin. Neuroreport 5:1641-1644.Google Scholar
  38. Sanghera, M. K., Manaye, K., McMahon, A., Sonsalla, P. K., and German, D. C. (1997). Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. Neuroreport 8:3327-3331.Google Scholar
  39. Schwarting, R. K. W., and Huston, J. P. (1987). Short-term effects of ether, equithesin and droperidol/fentanyl on catecholamine and indolamine metabolism in the brain of the rat. Neuropharmacology 26:457-461.Google Scholar
  40. Schwarting, R. K. W., and Huston, J. P. (1996a). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog.Neurobiol. 50:275-331.Google Scholar
  41. Schwarting, R. K. W., and Huston, J. P. (1996b). Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog.Neurobiol. 49:215-266.Google Scholar
  42. Sershen, H., Hashim, A., and Lajtha, A. (1987). Behavioral and biochemical effects of nicotine in an MPTP-induced mouse model of Parkinson's disease. Pharmacol.Biochem.Behav. 28:299-303.Google Scholar
  43. Sherwin, C. M. (1997). Observations on the prevalence of nest-building in non-breeding TO strain mice and their use of two nesting materials. Lab.Anim. 31:125-132.Google Scholar
  44. Siegfried, B., and Bures, J. (1980). Handedness in rats: Blockade of reaching behavior by unilateral 6-OHDA injections into substantia nigra and caudate nucleus. Physiol.Behav. 8:360-368.Google Scholar
  45. Sonsalla, P. K., and Heikkila, R. E. (1986). The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur.J.Pharmacol. 129:339-345.Google Scholar
  46. Steiner, H., Fuchs, S., and Accili, D. (1997). D3 dopamine receptordeficient mouse: Evidence for reduced anxiety. Physiol.Behav. 63:137-141.Google Scholar
  47. Sundstrom, E., and Samuelsson, E. B. (1997). Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents. Pharmacol.Toxicol. 81:226-231.Google Scholar
  48. Sundstrom, E., Stromberg, I., Tsutsumi, T., Olson, L., and Jonsson, G. (1987). Studies on the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice. Brain Res. 405:26-38.Google Scholar
  49. Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., and Uhl, G. R. (1997). VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc.Natl.Acad.Sci.USA 94:9938-9943.Google Scholar
  50. Trimmer, P. A., Smith, T. S., Jung, A. B., and Bennett, J. P. Jr. (1996). Dopamine neurons from transgenic mice with a knockout of the p53 gene resist MPTP neurotoxicity. Neurodegeneration 5:233-239.Google Scholar
  51. Willis, G. L., and Donnan, G. A. Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice. Brain Res. 402:269-274.Google Scholar
  52. Yurek, D. M., Deutch, A. Y., Roth, R. H., Sladek, J. R., Jr. (1989). Morphological, neurochemical, and behavioral characterizations associated with the combined treatment of diethyldithiocarbamate and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res. 497:250-259.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Marco Sedelis
    • 1
  • Katja Hofele
    • 2
  • Georg W. Auburger
    • 2
  • Sarah Morgan
    • 1
  • Joseph P. Huston
    • 1
  • Rainer K. W. Schwarting
    • 3
  1. 1.Institute of Physiological Psychology I, Center for Biological and Medical ResearchHeinrich-Heine-University of DüsseldorfDüsseldorfGermany
  2. 2.Department of NeurologyHeinrich-Heine-University of DüsseldorfDüsseldorfGermany
  3. 3.Institute of Physiological Psychology I, Center for Biological and Medical ResearchHeinrich-Heine-University of DüsseldorfDüsseldorfGermany

Personalised recommendations