General Relativity and Gravitation

, Volume 32, Issue 3, pp 491–503 | Cite as

Tensor Distributions on Signature-changing Space-times

  • David Hartley
  • Robin W. Tucker
  • Philip A. Tuckey
  • Tevian Dray


Irregularities in the metric tensor of a signature-changing space-time suggest that field equations on such space-times might be regarded as distributional. We review the formalism of tensor distributions on differentiable manifolds, and examine to what extent rigorous meaning can be given to field equations in the presence of signature-change, in particular those involving covariant derivatives. We find that, for both continuous and discontinuous signature-change, covariant differentiation can be defined on a class of tensor distributions wide enough to be physically interesting.

Tensor distributions Signature-change 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balasin, H. “Colombeau's generalized functions on arbitrary manifolds.” Preprint Alberta-Thy-35-96, TUW 96-20, gr-qc/9610017, 1996.Google Scholar
  2. 2.
    Choquet-Bruhat, Y. (1993). In Proc. Int. Symposium on Generalized Functions and their Applications(V aranasi, 1991), R. S. Pathak, ed. (Plenum, New York).Google Scholar
  3. 3.
    Choquet-Bruhat, Y., DeWitt-Morette, C., with Dillard-Bleick, M. (1982). Analysis, Manifolds, and Physics (revised ed., North-Holland, Amsterdam/New York).Google Scholar
  4. 4.
    Clarke, C. J. S., Vickers, J. A., and Wilson, J. P. (1996). Class. Quantum Grav. 13, 2485.Google Scholar
  5. 5.
    Dray, T. (1996). J. Math. Phys. 37, 5627.Google Scholar
  6. 6.
    Dray, T. (1997). Int. J. Mod. Phys. D 6, 717.Google Scholar
  7. 7.
    Dray, T., Hellaby, G. (1996). Gen. Rel. Grav. 28, 1401; Kriele, M. (1996). Gen. Rel. Grav. 28, 1409.Google Scholar
  8. 8.
    Dray, T., Manogue, C. A., and Tucker, R. W. (1993). Phys. Rev. D 48, 2587.Google Scholar
  9. 9.
    Dray, T., Manogue, C. A., and Tucker, R. W. (1995). Class. Quantum Grav. 12, 2767.Google Scholar
  10. 10.
    de Rham, G. (1984). Differentiable Manifolds (Springer Verlag, Berlin & Heidelberg). [Originally published in French: (1955). VariétésDifférentiables, Actualités Scientifiques et Industrielles 1222 (Hermann, Paris).]Google Scholar
  11. 11.
    Hayward, S. (1993). “Junction conditions for signature change.” Preprint gr-qc/9303034.Google Scholar
  12. 12.
    Hayward, S. (1994). Class. Quantum Grav. 11, L87.Google Scholar
  13. 13.
    Israel, W. (1966). Nuovo Cimento B 44, 1.Google Scholar
  14. 14.
    Kobayashi S., and Nomizu, K. (1963–69). Foundationsof Differential Geometry (Interscience Publishers, New York).Google Scholar
  15. 15.
    Kossowski, M., and Kriele, M. (1993) Class. Quantum Grav. 10, 2363.Google Scholar
  16. 16.
    Lichnerowicz, A. (1995). Math. Phys. Studies 14, (Kluwer Academic Publishers, Dordrecht).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • David Hartley
    • 1
  • Robin W. Tucker
    • 2
  • Philip A. Tuckey
    • 3
  • Tevian Dray
    • 4
  1. 1.Department of Physics and Mathematical PhysicsUniversity of AdelaideAdelaideAustralia
  2. 2.School of Physics and ChemistryLancaster UniversityLancasterUK
  3. 3.Observatoire de BesançonUniversité de Franche-ComtéBesançon CedexFrance
  4. 4.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations