Boundary-Layer Meteorology

, Volume 91, Issue 2, pp 165–189 | Cite as

The Stable Atmospheric Boundary Layer over an Antarctic ice Sheet

  • Dörthe Handorf
  • Thomas Foken
  • Christoph Kottmeier


Turbulence measurements up to 11-m height and longterm profile measurements up to 45-m height performed at the German Neumayer Station in Antarctica are used to investigate different components of turbulence closure schemes of the stable boundary layer. The results confirm the linear relationships for the universal functions of momentum and heat exchange in the stability range z/L < 0.8 ... 1, whereas the local scaling approach should be used above the surface layer. Furthermore, boundary-layer heights below 50 m are frequently observed at this coastal Antarctic site, mainly due to the influence of stability above the boundary layer. It is shown that the inclusion of this stability into parametrization relations is necessary to provide realistic equilibrium heights of the stable boundary layer. Two relations, based on different physical approaches, were successfully applied for the parametrization of the equilibrium height.

Stable boundary layer Boundary-layer height Universal functions Similarity theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akima, H.: 1970, ‘A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures', J. Assoc. Comp. Mach. 17, 589-602.Google Scholar
  2. Andrén, A.: 1995, ‘The Structure of Stably Stratified Atmospheric Boundary Layers. A Large-Eddy-Simulation Study', Quart. J. Roy. Meteorol. Soc. 48, 1690-1698.Google Scholar
  3. Ball, F. K.: 1956, ‘The Theory of Strong Katabatic Winds', Austral. J. Phys. 9, 373-386.Google Scholar
  4. Belitz, H.-J.: 1989, ‘Impuls-und Energietransporte über einem antarktischen Schelfeis', Reports of the Institute of Meteorol. and Climatol., Vol. 37, University of Hannover, 147 pp.Google Scholar
  5. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably Stratified Planetary Boundary Layer', J. Atmos. Sci. 35, pp. 1427-1440.Google Scholar
  6. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Fluxprofile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189.Google Scholar
  7. Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup, A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data', Techn. Papers, Vol. 19, CSIRO, Division of Meteorol. Physics, Aspendale, Australia 19, 21 pp. + tables.Google Scholar
  8. Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited', Quart. J. Roy. Meteorol. Soc. 116, 127-158.Google Scholar
  9. Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.Google Scholar
  10. Dynkerke, P. G.: 1991, ‘Radiation Fog: A Comparison of Model Simulation with Detailed Observations', Mon. Wea. Rev. 119, 324-341.Google Scholar
  11. Ekman, V. W.: 1905, ‘On the Influence of the Earth's Rotation on Ocean Currents', Arkiv. Mat. Astron. Fysik. 2(11), 1-53.Google Scholar
  12. Foken, T. and Wichura, B.: 1996, ‘Tools for Quality Assessment of Surface-Based Flux Measurements', Agric. For. Meteorol. 78, 83-105.Google Scholar
  13. Foken, T.: 1998, ‘The Turbulence Experiment FINTUREX at the Neumayer-Station/Antarctica', Reports of the German Weather Service, in press.Google Scholar
  14. Forrer, J. and Rotach, M. W.: 1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet', Boundary-Layer Meteorol. 85, 111-136.Google Scholar
  15. Forrer, J. and Rotach, M. W.: 1997a, ‘Similarity in a Continuously Stable Boundary Layer', Amer. Meteorol. Soc., 12th Symposium on Boundary Layers and Turbulence, Conference Proceedings, American Meteorological Society, pp. 166-167.Google Scholar
  16. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, U.K., 316 pp.Google Scholar
  17. Garratt, J. R. and Brost, R. A.: 1981, ‘Radiative Cooling Effects within and above the Nocturnal Boundary Layer', J. Atmos. Sci. 38, 2730-2746.Google Scholar
  18. Handorf, D.: 1996, ‘Parametrization of the Stable Boundary Layer over an Antarctic Ice Shelf’ (in German), Reports on Polar Research, AWI Bremerhaven 204, 133 pp.Google Scholar
  19. Högström, U.: 1988, ‘Non-Dimensional Wind-and Temperature Profiles in the Atmospheric Surface Layer: A Re-Evaluation', Boundary-Layer Meteorol. 42, 55-78.Google Scholar
  20. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers', Quart. J. Roy. Meteorol. Soc. 111, 793-815.Google Scholar
  21. King, J. C.: 1990, ‘Some Measurements of Turbulence over an Antarctic Ice Shelf', Quart. J. Roy. Meteorol. Soc. 116, 379-400.Google Scholar
  22. Kitaigorodskii, S. A.: 1960, ‘On the Computation of the Thickness of the Wind-Mixing Layer in the Ocean', Izv. AN SSSR. Ser. Geofiz. 3, 425-431.Google Scholar
  23. Kitaigorodskii, S. A.: 1988, ‘A Note on Similarity Theory for Atmospheric Boundary Layers in the Presence of Background Stable Stratification', Tellus 40A, 434-438.Google Scholar
  24. Kitaigorodskii, S. A. and Joffre, S. M.: 1988, ‘In Search of Simple Scaling for the Heights of the Stratified Atmospheric Boundary Layer', Tellus 40A, 419-433.Google Scholar
  25. König, G.: 1985, ‘Roughness Length of an Antarctic Ice Shelf', Polarforschung 55, 27-32.Google Scholar
  26. Kottmeier, C.: 1986, ‘Shallow Gravity Flows over the Ekström Ice Shelf', Boundary-Layer Meteorol. 35, 1-20.Google Scholar
  27. Kottmeier, C. and Belitz, H.-J.: 1987, ‘Meteorological Research Using a High Mast on the Antarctic Ice Shelf', Marine Technology 1, 5-10.Google Scholar
  28. Lettau, H.: 1971, ‘Antarctic Atmosphere as a Test Tube for Meteorological Theories', Research in the Antarctic, American Association for the Advancement of Science, pp. 443-475.Google Scholar
  29. Lettau, H. and Dabberdt, W.: 1970, ‘Variangular Wind Spirals', Boundary-Layer Meteorol. 1, 64-79.Google Scholar
  30. Marquardt, D.: 1963, ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters', J. Soc. Indust. Appl. Math. 11, 431-441.Google Scholar
  31. Mason, P. J. and Derbyshire, S. H.: 1990, ‘Large-Eddy Simulation of the Stably Stratified Atmospheric Boundary Layer', Boundary-Layer Meteorol. 53, 117-162.Google Scholar
  32. Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 113, 413-433.Google Scholar
  33. Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Atmospheric Surface Layer’ (in Russian), Trudy Geofiz. Inst. Akad. Nauk SSSR 24(151), 163-187.Google Scholar
  34. Nieuwstadt, F. T. M.: 1978, ‘The Computation of the Friction Velocity u * and the Temperature Scale T * from Temperature and Wind Velocity Profiles by Least-Square Methods', Boundary-Layer Meteorol. 14, 235-246.Google Scholar
  35. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer', J. Atmos. Sci. 41, 2202-2216.Google Scholar
  36. Nieuwstadt, F. T. M.: 1985, ‘A Model for the Stationary, Stable Boundary Layer', in J. C. R. Hunt (ed.), Turbulence and Diffusion in Stable Environment, Clarendon Press, Oxford, pp. 149-179.Google Scholar
  37. Nieuwstadt, F. T. M. and Tennekes, H.: 1981, ‘A Rate Equation for the Nocturnal Boundary-Layer-Height', J. Atmos. Sci. 38, 1418-1428.Google Scholar
  38. Pollard, R. T., Rhines, R. B., and Thompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer. A Rate Equation for the Nocturnal Boundary-Layer-Height', Geophys. Fluid Dyn. 3, 381-404.Google Scholar
  39. Rossby, C. G. and Montgomery, R. G.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents', Pap. Phys. Oceanogr. Meteorol. 3(3), 1-101.Google Scholar
  40. Sorbjan, Z.: 1986, ‘On Similarity in the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 34, 377-397.Google Scholar
  41. Stigebrandt, A.: 1985, ‘A Model of the Seasonal Pycnocline in Rotating Systems with Application to the Baltic Proper', J. Phys. Oceanog. 15, 1392-1404.Google Scholar
  42. Wamser, C. and Lykossov, V. N.: 1995, ‘On the Friction Velocity during Blowing Snow', Contribut. Atmos. Phys. 68, 85-94.Google Scholar
  43. Webb, E. K.: 1970, ‘Profile Relationships: The Log-Linear Range, and Extension to Strong Stability', Quart. J. Roy. Meteorol. Soc. 96, 67-90.Google Scholar
  44. Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer', Boundary-Layer Meteorol. 3, 141-145.Google Scholar
  45. Zilitinkevich, S. S.: 1989, ‘Velocity Profiles, Resistance Law and Dissipation Rate of Mean Flow Kinetic Energy in a Neutrally and Stably Stratified Planetary Boundary Layer', Boundary-Layer Meteorol. 46, 367-387.Google Scholar
  46. Zilitinkevich, S. S. and Mironov, D. V.: 1997, ‘A Multi-Limit Formulation for the Equilibrium Depth of a Stably Stratified Boundary Layer', Boundary-Layer Meteorol. 81, 325-351.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dörthe Handorf
    • 1
  • Thomas Foken
    • 2
  • Christoph Kottmeier
    • 3
  1. 1.Alfred Wegener Institute for Marine and Polar Research, Research Department, PotsdamPotsdamGermany
  2. 2.Dept. of MicrometeorologyUniversity of BayreuthBayreuthGermany
  3. 3.Institute of Meteorology and Climate ResearchUniversity of KarlsruheKarlsruheGermany

Personalised recommendations