Biologia Plantarum

, Volume 41, Issue 4, pp 497–505 | Cite as

Physical mapping of the 18S-25S and 5S ribosomal RNA genes in diploid bananas

  • M. Doleželová
  • M. Valárik
  • R. Swennen
  • J.P. Horry
  • J. Doležel


Fluorescent in situ hybridisation (FISH) was used to determine the number and distribution of the 18S-25S and 5S rDNA sites on mitotic chromosomes of 6 wild and 2 edible diploid (2n=22) accessions belonging to the two banana species, Musa acuminata and M. balbisiana. FISH with the 18S-25S probe resulted in signals on one pair of chromosomes, the position of signals corresponded to the secondary constriction at the end of a short arm. The intensity of labelling was different between the homologues and the larger site corresponded to a larger secondary constriction. This labelling pattern was observed consistently in all genotypes. On the other hand, differences in the number of 5S sites were observed between the accessions. While in some of the wild seeded species, the 5S rDNA was localised on two pairs of chromosomes, hybridisation signals appeared on three pairs of chromosomes in other wild accessions. Quite unexpectedly, only five sites of 5S rDNA were reproducibly observed in the two vegetatively propagated diploid edible cultivars, Pisang Mas and Niyarma Yik, evidence for structural heterozygosity. A dual colour FISH showed that in all accessions, the satellite chromosomes carrying the 18S-25S loci did not carry the 5S loci. The results demonstrate that molecular cytogenetics can be applied to Musa and that physical cytogenetic maps can be generated.

Musa acuminata Musa balbisiana fluorescent in situ hybridisation FISH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, J., Watanabe, K., Fukui, K., Ohmido, N., Kosuge, K.: Chromosomal location and reorganization of the 45S and 5S rDNA in the Brachyscome linerilobacomplex.-J. Plant Res. 110: 371-377, 1997.Google Scholar
  2. Appels, R., Gerlach, W.L., Dennis, E.S., Swift, H., Peacock, W.J.: Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs in cereals.-Chromosoma 78: 293-311, 1980.CrossRefGoogle Scholar
  3. Arnheim, N., Krystal, M., Schmickel, R., Wilson, G., Ryder, O., Zimmer, E.: Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and ape.-Proc. nat. Acad. Sci. USA 77: 7323-7327, 1980.PubMedCrossRefGoogle Scholar
  4. Carreel, F.: Etude de la diversité génétique des bananiers (genre Musa) à l'aide des marqueurs RFLP.-Thesis. Institut National Agronomique Paris-Grignon, Paris 1994.Google Scholar
  5. Cheesman, E.E.: The classification of the bananas.-Kew Bull. 2: 97-117, 1947.Google Scholar
  6. Doleźel, J.: Application of karyology and cytometry in mutation breeding of African plantain in vitro.-In: Report of the First FAO/IAEA Research Co-ordination Meeting on Cellular Biology and Biotechnology Including Mutation Techniques for Creation of New Useful Banana Genotypes. Pp. 13-22. IAEA, Vienna 1996.Google Scholar
  7. Doležel, J., Doleželová, M., Novák, F.J.: Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminataand M. balbisiana).-Biol. Plant. 36: 351-357, 1994.CrossRefGoogle Scholar
  8. Doležel, J., Doleželová, M., Roux, N., Van den Houwe, I.: A novel method to prepare slides for high resolution chromosome studies in Musaspp.-Infomusa 1998 (in press).Google Scholar
  9. Doleželová, M., Valárik, M., Doležel, J.: Molecular cytogenetics of Musaspp.-In: Abstracts of the Spring Symposium on Plant Cytogenetics. P. 22. Silesian University, Cieszyn 1997.Google Scholar
  10. Dvořák, J.: Evolution of multigene families: The ribosomal RNA loci of wheat and related species.-In: Brown, A.H.D. (ed.): Plant Population Genetics, Breeding and Genetic Resources. Pp. 83-97. Sinauer Associate Inc. Publ., Sunderland 1990.Google Scholar
  11. Faure, S., Bakry, F., Gonzales de Leon, D.: Cytogenetic studies of diploid bananas.-In: Breeding Banana and Plantain for Resistance to Disease and Pests. Pp. 77-92. CIRAD/INIBAP, Montpellier 1992.Google Scholar
  12. Fukui, K., Ohmido, N., Khush, G.S.: Variability in rDNA loci in genus Oryzadetected through fluorescent in situhybridization.-Theor. appl. Genet. 87: 893-899, 1994.CrossRefGoogle Scholar
  13. Gawel, N.J., Jarret, R.L., Whittemore, A.P.: Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa.-Theor. appl. Genet. 84: 286-290, 1992.CrossRefGoogle Scholar
  14. Gowen, S.: Bananas and Plantains.-Chapman and Hall, London 1995.Google Scholar
  15. Howell, E.C., Newbury, H.J., Swennen, R.L., Withers, L.A., Ford-Lloyd, B.V.: The use of RAPD for identifying and classifying Musagermplasm.-Genome 37: 328-332, 1993.Google Scholar
  16. Hutchinson, D.J.: Translocation configurations in a diploid banana.-Can. J. Genet. Cytol. 8: 184-187, 1966.Google Scholar
  17. Kaemmer, D., Fischer, D., Jarret, R.L., Baurens, F.-C., Grapin, A., Dambier, D., Noyer, J-L., Lanaud, C., Kahl, G., Lagoda, P.J.L.: Molecular breeding in the genus Musa: a strong case for STMS marker technology.-Euphytica 96: 49-63, 1997.CrossRefGoogle Scholar
  18. Lanaud, C., Tezenas du Montcel, H., Jolivot, M.P., Glaszmann, J.C., De Leon, D.G.: Variation of ribosomal gene spacer length among wild and cultivated banana.-Heredity 68: 147-156, 1992.Google Scholar
  19. Leitch, I.J., Heslop-Harrison, J.S.: Physical mapping of the 18S-5.8S-26S rRNA genes in barley by in situ hybridisation.-Genome 35: 1013-1018, 1992.Google Scholar
  20. Lubaretz, O., Fuchs, J., Ahne, R., Meister, A., Schubert, I.: Karyotyping of three Pinaceaespecies viafluorescent in situhybridization and computer-aided chromosome analysis.-Theor. appl. Genet. 92: 411-416, 1996.CrossRefGoogle Scholar
  21. Ma, Y., Islam-Faridi, M.N., Crane, C.F., Ji, Y., Stelly, D.M., Price, H.J., Byrne, D.H.: In situhybridization of ribosomal DNA to rose chromosomes.-J. Hered. 88: 158-161, 1997.Google Scholar
  22. Osuji, J.O., Harrison, G., Crouch, J., Heslop-Harrison, J.S.: Identification of the genomic constitution of MusaL. lines (bananas, plantains and hybrids) using molecular cytogenetics.-Ann. Bot. 80: 787-793, 1997.CrossRefGoogle Scholar
  23. Robinson, J.C.: Bananas and Plantains.-CAB International, Wallingford 1996.Google Scholar
  24. Rogers, S.O., Bendich, A.J.: Ribosomal RNA genes in plants: A variability in copy number and in the intergenic spacer.-Plant mol. Biol. 9: 509-520, 1987.CrossRefGoogle Scholar
  25. Simmonds, N.W.: Evolution of the Bananas.-Longman, London 1962.Google Scholar
  26. Snowdon, R.J., Kohler, W., Kohler, A.: Chromosomal localization and characterization of rDNA loci in the BrassicaA and C genomes.-Genome 40: 582-587, 1997.PubMedGoogle Scholar
  27. Stover, R.H., Buddenhagen, I.W.: Banana breeding, polyploidy, disease resistance and productivity.-Fruits 41: 175-191, 1986.Google Scholar
  28. Wang, Z., Lin, Z., Pan, K.: Cytogenetical studies in Musa(Eumusa).-In: Current Banana Research and Development in China. Pp. 29-43. South China Agricultural University, Guangzhou 1993.Google Scholar
  29. Wilson, G.B.: Cytological studies in the Musae. II. Meiosis in some diploid clones.-Genetics 31: 475-482, 1946.PubMedGoogle Scholar
  30. Yakura, K., Tanifuji, S.: Molecular cloning and restriction analysis of EcoRI-fragments of Vicia fabarDNA.-Plant Cell Physiol. 24: 1327-1330, 1983.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • M. Doleželová
    • 1
  • M. Valárik
    • 2
  • R. Swennen
    • 3
  • J.P. Horry
    • 4
  • J. Doležel
    • 2
  1. 1.Academy of Sciences of the Czech Republic, Sokolovská 6Institute of Experimental BotanyOlomoucCzech Republic
  2. 2.Institute of Experimental Botany, Sokolovská 6De Montfort University Norman Borlaug Centre for Plant ScienceOlomoucCzech Republic
  3. 3.Laboratory of Tropical Crop ImprovementKatholieke Universiteit LeuvenHeverleeBelgium
  4. 4.International Network for the Improvement of Banana and PlantainMontpellierFrance

Personalised recommendations