Documenta Ophthalmologica

, Volume 95, Issue 3–4, pp 335–347

Electrophysiological correlates of human texture segregation, an overview

  • Michael Bach
  • Thomas Meigen


‘Texture segregation’ results from parallel processing in the visual cortex. It occurs when the stimulus contains spatial gradients within a visual dimension. We here present an introductory overview of the field, concentrating on electrophysiological correlates in the human EEG (‘tsVEPs’) of the neuronal processes underlying texture segregation. We describe the isolation of the tsVEP from the background EEG, give examples of the correlation between saliency and tsVEP amplitude and compare texture segregation between visual dimensions.

electrophysiology human texture segregation VEP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Treisman A. Preattentive processing in vision. Comput Vis Graph Image Proc 1985; 31: 156–77.CrossRefGoogle Scholar
  2. 2.
    Beck J. Similarity grouping and peripheral discriminability under uncertainty. Am J Psychol 1972; 85: 1–19.PubMedCrossRefGoogle Scholar
  3. 3.
    Julesz B, Bergen JR. Textons, the fundamental elements in preattentive vision and perception of textures. Bell Sys Tech J 1983; 62: 1619–45.Google Scholar
  4. 4.
    Treisman A, Sato S. Conjunction search revisited. J Exp Psychology Human Perception and Performance 1990; 16: 459–78.CrossRefGoogle Scholar
  5. 5.
    Nothdurft HC. Texton segregation by associated differences in global and local luminance distribution. Proc Royal Soc London B 1990; 239: 295–320.CrossRefGoogle Scholar
  6. 6.
    Bach M, Meigen T. Electrophysiological correlates of texture segregation – Effect of orientation gradient. Invest Ophthalmol Vis Sci (ARVO Suppl.) 1992; 33: #1349.Google Scholar
  7. 7.
    Bach M, Meigen T. Electrophysiological correlates of texture-segmentation in human observers. ARVO Abstracts. Invest Ophthalmol Vis Sci 1990; 31 (suppl): 104.Google Scholar
  8. 8.
    Bach M, Meigen T. Electrophysiological correlates of texture segregation in the human visual evoked potential. Vision Res 1992; 32: 417–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Lamme VAF, van Dijk BW, Spekreijse H. Texture segregation is processed by primary isual cortex in man and monkey. Evidence from VEP experiments. Vision Res 1992; 32: 797–807.PubMedCrossRefGoogle Scholar
  10. 10.
    Lamme VA, van Dijk BW, Spekreijse H. Contour from motion processing occurs in primary visual cortex. Nature 1993; 363: 541–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Lamine VA, van Dijk BW, Spekreijse H. Organization of texture segregation processing in primate visual cortex. Vis Neurosci 1993; 10: 781–90.CrossRefGoogle Scholar
  12. 12.
    Meigen T, Bach M. Perceptual ranking vs VEP for different local features in texture segregation. Invest Ophthalmol Vis Sci 1993; 34: 3264–70.PubMedGoogle Scholar
  13. 13.
    Meigen T, Lagrèze W, Bach M. Asymmetries in preattentive line detection. Vision Res 1994; 34: 3103–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Bach M, Meigen T. Similar electrophysiological correlates of texture segregation induced by luminance, orientation, motion and stereo. Vision Res 1997; 37: 409–14.Google Scholar
  15. 15.
    Knierim JJ, van Essen DC. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 1992; 67: 961–80.PubMedGoogle Scholar
  16. 16.
    Lamme VA. The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 1995; 15: 1605–15.PubMedGoogle Scholar
  17. 17.
    Blakemore C, Tobin BA. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp Brain Res 1972; 15: 439–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Kastner S, Nothdurft HC, Pigarev I. Neuronal responses to orientation and motion contrast in feline striate cortex. Soc Neurosci Abst 1995.Google Scholar
  19. 19.
    Allinan J, Miezin F, McGuinness EL. Effects of background motion on the response of neurones in the first and second cortical visual areas. In: Edelman GM, Gall WE and Cowan MW, eds. Signal and Sense: Local and Global Order in Perceptual Maps. New York: Wiley-Liss, 1991: 131–41.Google Scholar
  20. 20.
    Kastner S, Nothdurft H-C, Pigarv IN. Neuronal correlates of pop-out in cat striate cortex. Vision Res 1997; 37: 371–6.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Michael Bach
    • 1
  • Thomas Meigen
    • 2
  1. 1.Elektrophysiologisches LaborUniversitäts-Augenklinik FreiburgGermany
  2. 2.Univ.-AugenklinikWürzburgGermany

Personalised recommendations