Advertisement

Biochemical Genetics

, Volume 38, Issue 1–2, pp 27–40 | Cite as

A Phylogenetic View on Species Radiation in Apodemus Inferred from Variation of Nuclear and Mitochondrial Genes

  • Keiko Serizawa
  • Hitoshi Suzuki
  • Kimiyuki Tsuchiya
Article

Abstract

Species of field mice (genus Apodemus) are the most common rodents inhabiting woodlands and forests of the Palaearctic region. We examined the cytochrome b (cyt b) gene in mitochondrial DNA (1140 bp) and the interphotoreceptor retinoid binding protein (IRBP) gene in nuclear DNA (1152 bp) in nine species of Apodemus. Based on the genetic variation, the nine species were grouped into four lineages: (1) Agrarius group (A. agrarius, A. peninsulae, A. semotus, and A. speciosus), (2) Argenteus group (A. argenteus), (3) Gurkha group (A. gurkha), and (4) Sylvaticus group (A. alpicola, A. flavicollis, and A. sylvaticus). It was shown that these four lineages diverged within a short period of evolutionary time, suggestive of a radiation event. Soon after the radiation, the Agrarius group was likely to have differentiated again into the species lineages simultaneously. In contrast, the European clade, the Sylvaticus group, radiated rather recently. The relative ratio of the extent of sequence divergence among the four main lineages to that among the members of the subfamily Murinae (including Mus and Rattus) was calculated to be 72.4% in the cyt b gene with transversional substitutions, and 58.5% in the IRBP gene with all substitutions, using the Kimura two-parameter method. The value for the three European lineages was 27.6% in the cyt b gene and 12.3% in the IRBP gene. These results may have a correlation with the notion that deciduous broadleaf forests remained in Central East Asia through the late Tertiary to the present, while those in Europe to a large extent had disappeared by the Pliocene.

Apodemus field mice molecular phylogeny cytochrome b IRBP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Couslon, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290:457.Google Scholar
  2. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M.W., and Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167.Google Scholar
  3. Bonhomme, F., Iskandar, D., Thaler, L., and Petter, F. (1985). Electromorphs and phylogeny in Muroid rodents. In Luckett, W. P., and Hartenberger, J.-L. (eds.), Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis, Plenum Press, New York and London, pp. 671–683.Google Scholar
  4. Borst, D. E., and Nickerson, J. M. (1988). The isolation of a gene encoding interphotoreceptor retinoid-binding protein. Exp.Eye Res. 47:825.Google Scholar
  5. Chelomina, G. N., Suzuki, H., Tsuchiya, K., Moriwaki, K., Lyapunova, E. A., and Vorontsov, N. N. (1998). Sequencing of the mtDNA cytochrome b gene and reconstruction of the maternal relationships of wood and field mice of the genus Apodemus (Muridae, Rodentia). Russ.J.Genet. 34:529.Google Scholar
  6. Corbet, G. B. (1978). The Mammals of the Palaearctic Region: A Taxonomic Review, British Museum (Natural History), Cornell University Press, London and Ithaca, NY.Google Scholar
  7. Corbet, G. B., and Hill, J. E. (1991). A World List of Mammalian Species (3rd ed.), Oxford University Press, London.Google Scholar
  8. Corbet, G. B., and Hill, J. E. (1992). The Mammals of the Indomalayan Region: A Systematic Review, Oxford University Press, London.Google Scholar
  9. Felsenstein, J. (1993). PHYLIP, Version 3.5, Department of Genetics, University of Washington, Seattle.Google Scholar
  10. Fong, S-L., Fong,W.-B., Morris, T. A., Kedzie, K. M., and Bridges, C. D. B. (1990). Characterization and comparative structural features of the gene for human interstitial retinol-binding protein. J. Biol.Chem. 265:3648.Google Scholar
  11. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals. J.Mol.Evol. 32:128.Google Scholar
  12. Jacobs, L. J., and Downs, W. R. (1994). The evolution of murine rodents in Asia. In Tomida, Y., Li, C. K., and Setoguchi, T. (eds.), Rodent and Lagomorph Families of Asian Origins and Diversification, National Science Museum Monographs, No. 8, Tokyo, pp. 149–156.Google Scholar
  13. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J.Mol.Evol. 16:111.Google Scholar
  14. Kumar, S., and Hedges, S. B. (1998).Amolecular time scale for vertebrate evolution. Nature 392:917.Google Scholar
  15. Kumar, S., Tamura, K., and Nei, M. (1993). MEGA: Molecular Evolutionary Genetics Analysis, Version 1.01, The Pennsylvania State University, University Park.Google Scholar
  16. Leopold, E. B. (1969). Late-Cenozoic patterns of plant extinction. In Martin, P. S., andWright, H. E., Jr. (eds.), Pleistocene Extinctions: The Search for a Cause, Vol. 6, Proceedings of the VII Congress of the International Association for Quaternary Research, Natl. Acad. Sci. Nat. Res. Comm., Yale University Press, New Haven, CT, pp. 203–246.Google Scholar
  17. Mielke, H.W. (1989). Patterns of Life: Biogeography of a Changing World, Unwin Hyman, Boston.Google Scholar
  18. Musser, G. G., and Carleton, M. D. (1993). Family Muridae. In Wilson, D. E., and Reeder, D. M. (eds.), Mammal Species of the World, 2nd ed., Smithsonian Institute Press, Washington, DC, and London, pp. 501–806.Google Scholar
  19. Musser, G. G., Brothers, E. M., Carleton, M. D., and Hutterer, R. (1996). Taxonomy and distributional records of Oriental and European Apodemus, with a review of the Apodemus- Sylvamus problem. Bonn.Zool.Beitr. 46:143.Google Scholar
  20. Orlov, V. N., Bulatova, N. S., Nadjafova, R. S., and Kozlovsky, A. I. (1996). Evolutionary classification of European wood mice of the subgenus Sylvaemus based on allozyme and chromosome data. Bonn.Zool.Beitr. 46:191.Google Scholar
  21. Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol.Biol.Evol. 4:406.Google Scholar
  22. Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G., and Stanhope, M. J. (1997). The interphotoreceptor retinoid binding protein gene in therian mammals: Implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc.Natl.Acad.Sci. USA 94:13754.Google Scholar
  23. Stanhope, M. J., Czelusniak, J., Si, J.-S., Nickerson, J., and Goodman, M. (1992). A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid binding protein, with convincing evidence for bat monophyly. Mol.Phylogenet.Evol. 1:148.Google Scholar
  24. Stanhope, M. J., Smith, M. R., Waddell, V. G., Porter, C. A., Shivji, M. S., and Goodman, M. (1996). Mammalian evolution and the interphotoreceptor retinoid binding protein (IRBP) gene: Convincing evidence for several superordinal clades. J.Mol.Evol. 43:83.Google Scholar
  25. Suarez, E., and Mein, P. (1998). Revision of the genera Parapodemus, Apodemus, Rhagamys and Rhagapodemus (Rodentia, Mammalia). Geobios 31:87.Google Scholar
  26. Suzuki, H., Tsuchiya, K., Sakaizumi, M., Wakana, S., Gotoh, O., Saitou, N., Moriwaki, K., and Sakurai, S. (1990). Differentiation of restriction sites in ribosomal DNA in the genus Apodemus. Biochem.Genet. 28:137.Google Scholar
  27. Suzuki, H., Tsuchiya, K., Sakaizumi, M., Wakana, S., and Sakurai, S. (1994). Evolution of restriction sites of ribosomal DNA in natural populations of the field mouse, Apodemus speciosus.J.Mol. Evol. 38:107.Google Scholar
  28. Suzuki, H., Minato, S., Tsuchiya, K., and Fokin, I. M. (1997). Phylogenetic position and geographic differentiation of the Japanese dormouse, Glirulus japonicus, revealed by variations in rDNA, mtDNA and the Sry gene. Zool.Sci. 14:167.Google Scholar
  29. Suzuki, H., Tsuchiya, K., and Takezaki, N. (2000). A molecular phylogenetic framework for the Ryukyu endemic rodents Tokudaia osimensis and Diplothrix legata (Rodentia, Mammalia). Mol. Phylogenet.Evol. (in press).Google Scholar
  30. Tajima, F., and Nei, M. (1984). Estimation of evolutionary distance between nucleotide sequences. Mol.Biol.Evol. 1:269.Google Scholar
  31. Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitution in the control region of mitochondrial DNAin humans and chimpanzees. Mol.Biol.Evol. 10:512.Google Scholar
  32. Tanai, T. (1991). Tertiary climatic and vegetational changes in the Northern Hemisphere. J.Geogr. 100:951 (in Japanese).Google Scholar
  33. Vogel, P., Maddalena, T., Mabille, A., and Paquet, G. (1991). Confirmation biochimique du statut specifique du mulot alpestre Apodemus alpicola Heinrich, 1952 (Mammalia, Rodentia). Bull. Soc.Vaudoise Sci.Nat. 80:471.Google Scholar
  34. Vorontsov, N. N., Mezhzherin, S. V., Boeskorov, G. G., and Lyapunova, E. A. (1989). Genetic differentiation of sibling species of wood mice (Apodemus ) in the Caucasia and their diagnostics. Doklady Akad.Nauk SSSR 309:1234 (in Russian).Google Scholar
  35. Vorontsov, N. N., Boeskorov, G. G., Mezhzherin, S. V., Lyapunova, E. A., and Kandaurov, A. S. (1992). Systematics of the Caucasian wood mice of the subgenus Sylvaemus (Mammalia, Rodentia, Apodemus ). Zool.Zhurna 71:119 (in Russian with English summary).Google Scholar
  36. Willis, K. J., Kleczkowski, A., and Crowhurst, S. J. (1999). 124,000-year periodicity in terrestrial vegetation change during the late Pliocene epoch. Nature 397:685.Google Scholar
  37. Zagwijn, W. H., and Doppert, J. W. C. (1987). Upper Cenozoic of the southern North Sea basin: palaeoclimatic and plaeogeographic evolution. Geol.Mijnb. 57:577.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Keiko Serizawa
    • 1
  • Hitoshi Suzuki
    • 1
  • Kimiyuki Tsuchiya
    • 2
  1. 1.Laboratory of Ecology and Genetics, Graduate School of Environmental Earth ScienceHokkaido University, Kita-kuSapporoJapan
  2. 2.Experimental Animal CenterMiyazaki Medical College, KiyotakeMiyazakiJapan

Personalised recommendations