Advertisement

Antonie van Leeuwenhoek

, Volume 75, Issue 4, pp 285–292 | Cite as

Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms

  • F. Polo
  • M.J. Figueras
  • I. Inza
  • J. Sala
  • J.M. Fleisher
  • J. Guarro
Article

Abstract

The incidence of serotypes of Salmonella in three types of environmental water (sea, river and fresh reservoirs) from north-east Spain was investigated. The study was performed at specific sampling locations during the summer for a period of five years (1992–1996). A total of 823 strains were isolated and 55 different serotypes were identified, 42 were recovered from sea water, 32 from river water and 12 from freshwater reservoirs. The most frequently isolated serotypes coincided with those involved in clinical cases in the area studied. Salmonella enteritidis was the most common (111 isolates), it was found in all types of water, although most predominantly in sea water (16.1% of the isolates). This serotype, together with S. hadar, significantly increased in frequency during the five year study period. The most frequent serotypes in river water and freshwater reservoirs were S. virchow (9.5%) and S. mikawasima (23.8%) respectively. Significant differences were assessed in the indicator organism densities between the samples with serotypes of clinical significance (S. enteritidis, S. infantis, S. typhimurium, S. virchow and S. paratyphi B) and those without clinical significance. Therefore their presence in all environmental waters may be of epidemiological significance.

coliforms environmental waters Salmonella serotypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon (1997) Minimising the risk of salmonellosis from eggs. Eurosurvillance 2: 86–88Google Scholar
  2. Arvanitidou M, Stathopoulus GA, Constantinidis TC & Katsouyannopoulus V (1995) The ocurrence of Salmonella, Campylobacter and Yersinia spp. in river and lake waters. Microbiol. Res. 150: 153–158Google Scholar
  3. Baird-Parker AC (1990) Foodborne salmonellosis. Lancet 336: 1231–1235Google Scholar
  4. Barreiro-García G, Olaizola-Mendibil A, Ulibarrena-Sainz M, Sanz de Galdeano C, Álvarez-Blanco A & Aguirre-Errasti C (1995) Insuficiencia cardiaca grave y lesiones cutáneas por Salmonella virchow. A propósito de un caso. An. Med. Interna 12: 343–345Google Scholar
  5. Clark RM, Geldreich EE, Fox KR, Rice EW, Johnson CH, Goodrich JA, Barnick JA & Abdesaken F (1996) Tracking a Salmonella serotype typhimurium outbreak in Gideon, Missouri: role of contaminant propagation modelling. J. Water S R T-Aqua. 45: 171–183Google Scholar
  6. Claudon D, Thompson D, Christenson E, Lawton G & Dick E (1971) Prolonged Salmonella contamination of a recreational lake by runoff waters. Appl. Microbiol. 21: 857–877Google Scholar
  7. Cordano AM & Virgilio R (1990) Salmonella contamination of surface waters. In: Castillo G, Campos V & Herrera L (Eds) Proceedings of the Second Biennial Water Quality Symposium, Microbiological Aspects. Editorial Universitaria, Santiago de ChileGoogle Scholar
  8. Craun GF (1988) Surface water supplies and health. J. Am. Water Works Ass. 80: 40–52Google Scholar
  9. Dupray E & Derrien A (1995) Influence of the previous stay of Escherichia coli and Salmonella spp. in waste waters on their survival in seawater. Water Res. 29: 1005–1011Google Scholar
  10. Ferguson CM, Coote BG, Ashbolt NJ & Stevenson IM (1996) Relationships between indicators, pathogens and water quality in an estuarine system. Water Res. 30: 2045–2054Google Scholar
  11. Fernandez de la Hoz K, Carpintero JL, Puchades J, Verde C & García C (1994) Investigación de los brotes de toxi-infección alimentaria en Mora (Toledo) con una fuente de infección común. Rev. Sanid. Hig. Pública (Madrid) 68: 589–595Google Scholar
  12. Figueras MJ, Polo FL, Inza I & Guarro J (1994) Poor specificity of m-Endo and m-FC culture media for the enumeration of coliform bacteria in sea water. Lett. Appl. Microbiol. 19: 446–450Google Scholar
  13. Figueras MJ, Polo FL, Inza I, Feliu MT & Guarro J (1996) A fast method for the confirmation of faecal streptococci from m-Enterococcus medium. Appl. Environ. Microbiol. 62: 2177–2178Google Scholar
  14. Figueras MJ, Polo FL, Inza I & Guarro J (1997) Past, present and future perspectives of the EU Bathing Water Directive. Mar. Pollut. Bull. 34: 148–156Google Scholar
  15. Frost JA, Kelleher A & Rowe B (1996) Increasing ciprofloxacin resistance in salmonellas in England and Wales. 1991–1994. J. Antimicrob. Chemoth. 37: 85–91Google Scholar
  16. Galés P & Baleux B (1992) Influence of the drainage basin input on a pathogenic bacteria (Salmonella) contamination of a Mediterranean lagoon (the Thau lagoon-France) and the survival of this bacteria in brackish water. Water Sci. Technol. 25: 105–114Google Scholar
  17. Geldreich EE (1970) Applying bacteriological parameters to recreational water quality. J. Am. Water Works Ass. 62: 113–120Google Scholar
  18. Goossens H, Wauters G, De Boeck M, Janssens M & Butzler JP (1984) Semisolid selective-motility enrichment medium for isolation of salmonellae from fecal specimens. J. Clin. Microbiol. 19: 940–941Google Scholar
  19. Isern AM, Ferrer MD & Fernández F (1987) Estudio de la Salmonella en el agua de mar de las playas de la ciudad de Barcelona. Gac. Sanit. (Barcelona) 1: 118–122Google Scholar
  20. Jackson GJ, Langford CF & Archer LA (1991) Control of salmonellosis and similar foodborne infections. Food Control, January: 26–34Google Scholar
  21. Kramer MH, Herwaldt BL, Craun GF, Calderon RL & Juranek DD (1996) Waterborne Disease: 1993 and 1994. J. Am. Waterworks Ass. 88: 66–80Google Scholar
  22. Landeras E, Usera MA, Calderón C & Mendoza MC (1997) Usefulness of phage typing and ‘two-way ribotyping’ to differentiate Salmonella enteritidis strains. Microbiología SEM 13: 471–480Google Scholar
  23. Mariscal A, Clavijo E, Carnero M, García R, García A, Pinedo A & Fenández J (1992) Epidomiología molecular de toxi-infecciones producidas por Salmonella enterica: correlación del serotipo y del perfil proteico y análisis del ADN plasmídico. Enf. Inf. Microbiol. Clin. 10: 328–333Google Scholar
  24. Moriñigo MA, Martínez-Manzanares E, Muñoz MA, Balebona MC & Borrego JJ (1993) Reliability of several microorganisms to indicate the presence of Salmonella in natural waters. Water Sci. Technol. 27: 471–474Google Scholar
  25. O'Shanahan L, Monzón-Moreno C, López-Orge RH & González-Lama Z (1990) Salmonella y otras bacterias de aguas costeras de Gran Canaria. Bol. Inst. Esp. Oceanogr. 6: 59–70Google Scholar
  26. Oziol E, Bonal J, Chauveau E, Talard P, Carli P & Chagnon A (1995) Acute myocarditis in non typhoid Salmonella infection. Arch. Mal. Coeur Vaiss. 88: 99–101Google Scholar
  27. Pelkonen S, Romppanen EL, Siitonen A & Pelkonen J (1994) Differentiation of Salmonella serovar infantis isolates from human and animal sources by fingerprinting IS200 and 16S rrn loci. J. Clin. Microbiol. 32: 2128–2133Google Scholar
  28. Polo FL, Figueras MJ, Inza I, Sala J, Fleisher JM & Guarro J (1998) Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol. Lett. 160: 253–256Google Scholar
  29. Pohl P, Chasseurlibotte ML, Imberechts H, Stockmans F, Marin M, Vanrobaeys G, Allali N & Courtier M (1995) Progression of the prevalence of Salmonella hadar isolates from men and animals in Belgium. Ann. Med. Vet. 139: 283–285Google Scholar
  30. Ramos JM, Ales JM, Cuenca-Estrella M, Fernández-Roblas R & Soriano F (1996) Changes in susceptibility of Salmonella enteritidis, Salmonella typhimurium and Salmonella virchow to six antimicrobial agents in a Spanish hospital, 1980–1994. Eur. J. Clin. Microbiol. 15: 85–88Google Scholar
  31. Ruiz J, Nuñez ML, Sempere MA, Díaz J & Gómez J (1995) Systemic infections in three infants due to a lactose-fermenting strain of Salmonella virchow. Eur. J. Clin. Microbiol. 14: 454–456Google Scholar
  32. Threlfall EJ, Frost JA, Ward LR & Rowe B (1996) Increasing spectrum of resistance in multiresistant Salmonella typhimurium. Lancet 347: 1053–1054Google Scholar
  33. Tobias H & Heinemeyer EA (1994) Vorkommen von Salmonella in küstennahem Nordseewasser sowie ihr hygienischer Bezug zu Indiakatorbakterien und kontaminationsquellen. Zbl. Hyg. Umweltmed. 195: 495–508Google Scholar
  34. Usera MA, Cano R & Echeita A (1995) Análisis de los serotipos de Salmonella sp. aislados en España en el periodo 1988–1992. Enf. Inf. Microbiol. Clín. 13: 138–145Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F. Polo
    • 1
  • M.J. Figueras
    • 1
  • I. Inza
    • 1
  • J. Sala
    • 1
  • J.M. Fleisher
    • 2
  • J. Guarro
    • 1
  1. 1.Unitat de Microbiologia, Facultat de MedicinaUniversitat Rovira i VirgiliReusSpain
  2. 2.Department of Preventive MedicineState University of New York, Health Science Center at BrooklynUSA

Personalised recommendations