Antonie van Leeuwenhoek

, Volume 74, Issue 1–3, pp 41–48 | Cite as

In situ detection of rhodococci associated with activated sludge foams

  • Russell J. Davenport
  • James N. Elliott
  • Tom P. Curtis
  • John Upton


Genus-specific 16S rRNA targeted oligonucleotide probes, Rco1 and Rco2, were designed and used to detect rhodococci in activated sludge foam samples by confocal laser scanning microscopy. Pure cultures were used to find the optimal hybridisation conditions which were determined by comparing the mean fluorescent intensities of target and non-target cells from images captured using a confocal laser scanning microscope (CLSM). The combination of fluorescent in situ hybridisation with rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy provides an effective way of detecting rhodococci in environmental samples.

activated sludge foaming fluorescent in situ hybridisation rhodococci mycolata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann RI, Krumholz L & Stahl DA (1990) Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J. Bacteriol. 172: 762–770Google Scholar
  2. Amann RI, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169Google Scholar
  3. Anonymous (1969) Milwaukee mystery: unusual operating problem develops. Water and Sewage Works 116: 213Google Scholar
  4. Blackall LL, Hayward AC, Pettigrew AE & Greenfield PF (1985) Biological foam and scum formation in activated sludge treatment systems. Australian Water and Wastewater Association, 11th Federal Convention, pp. 338–345Google Scholar
  5. Blackall LL, Harbers AE, Greenfield PF & Hayward AC (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci. Tech. 20: 493–495Google Scholar
  6. Chun, J (1995) Computer assisted identification and classification of actinomycetes. Ph.D. Thesis. University of Newcastle, Newcastle-upon-Tyne, UKGoogle Scholar
  7. De los Reyes FL, Ritter W & Raskin L (1997) Group-specific small-subunit rRNA hybridisation probes to characterize filamentous foaming in activated sludge systems. Appl. Env. Microbiol. 63: 1107–1117Google Scholar
  8. Goodfellow M, Davenport RJ, Stainsby FM & Curtis TP (1996) Actinomycete diversity associated with foaming in activated sludge plants. J. Ind. Microbiol. 17: 68–280Google Scholar
  9. Goodfellow M, Stainsby F, Davenport RJ, Chun J & Curtis TP (1998a) Activated sludge foaming: the true extent of actinomycete diversity. Water Sci. Tech. 37: 511–519Google Scholar
  10. Goodfellow M, Alderson G & Chun J (1998b) Rhodococcal systematics: problems and developments. Antonie von Leeuwenhoek 74: 3–20Google Scholar
  11. Gordon RE & Mihm JE (1962) Identification of Nocardia caviae (Erikson) nov. comb. Ann. N.Y. Acad. Sci. 98: 628–636Google Scholar
  12. Helmke E & Weyland H (1984) Rhodococcus marinonascens sp. nov. an actinomycete from the sea. Int. J. Syst. Bacteriol. 34: 127–138Google Scholar
  13. Jenkins D, Richard MG & Daigger GT (1993) Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2nd edn. Lewis Publishers, Boca Raton, USAGoogle Scholar
  14. Lemmer H & Kroppenstedt RM (1984) Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. Syst. Appl. Microbiol. 5: 124–135Google Scholar
  15. Lemmer H, Lind G, Schade M & Ziegelmayer, B (1998) Autecology of scum producing bacteria. Water Sci. Tech. 37: 527–530Google Scholar
  16. MacNaughton SJ, O & #x2019;Donnell AG & Embley TM (1994) Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridisation with fluorescently labelled oligonucleotide probes. Microbiology 140: 2859–2865Google Scholar
  17. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ & Woese CR (1997) The RDP (Ribosomal Database Project) Nucleic Acids Res. 25: 109–110Google Scholar
  18. Manz W, Amann R, Ludwig W, Wagner M & Schleifer K-H (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15: 593–600Google Scholar
  19. Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbour Laboratory, Cold Spring Harbour, USAGoogle Scholar
  20. Mori T, Sakai Y, Honda K, Yano I & Hashimoto S (1988) Stable abnormal foam in activated sludge process produced by Rhodococcus with strong hydrophobic property. Env. Tech. Lett. 9: 1041–1048Google Scholar
  21. Muyima NYO, Momba MNB & Cloete TE (1997) Biological methods for the treatment of wastewaters. In: Cloete TE and Muyima NYO (Eds) Microbial Community Analysis: The key to the design of biological wastewater treatment systems. Scientific and Technical Report No. 5 (pp 1–24), IAWQGoogle Scholar
  22. Schuppler M, Wagner M, Sch & #x00F6;n G & G & #x00F6;bel UB (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144: 249–259Google Scholar
  23. Sezgin M, Lechevalier MP & Karr PR (1988) Isolation and identification of actinomycetes present in activated sludge scum. Water Sci. Technol. 20: 257–263Google Scholar
  24. Soddell JA & Seviour RJ (1990) Microbiology of foaming in activated sludge plants. J. Appl. Bacteriol. 69: 145–176Google Scholar
  25. Soddell JA & Seviour RJ (1998) Numerical taxonomy of Skermania piniformis and related isolates from activated sludge. J. Appl. Bacteriol. 84: 272–284Google Scholar
  26. Sokal RR & Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman and Co., New YorkGoogle Scholar
  27. Yoshimi Y, Hiraishi A & Nakamura K (1996) Isolation and characterization of Microsphaera multipartia gen. nov., sp. nov., a polysaccharide-accumulating gram-positive bacterium from activated sludge. Int. J. Syst. Bacteriol. 46: 519–525Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Russell J. Davenport
    • 1
  • James N. Elliott
    • 1
    • 2
  • Tom P. Curtis
    • 1
  • John Upton
    • 3
  1. 1.Department of Civil EngineeringUniversity of NewcastleNewcastle-upon-TyneUK
  2. 2.Department of Life SciencesThe Nottingham Trent UniversityClifton Lane, Nottingham
  3. 3.Process DevelopmentSevern Trent Water Ltd.CoventryUK

Personalised recommendations