Boundary-Layer Meteorology

, Volume 90, Issue 2, pp 171–188 | Cite as

The Footprint for Estimation of Atmosphere-Surface Exchange Fluxes by Profile Techniques

  • T. W. Horst


The flux footprint, that is the contribution per unit emission from each element of the upwind surface area to measurement of the vertical flux of a passive scalar, is calculated for fluxes estimated by micrometeorological profile techniques. It is found that the upwind extent of the footprint for concentration-profile flux estimates is similar to that of the footprint for eddy-covariance flux measurements, when the eddy-covariance measurement is made at a height equal to the arithmetic mean of the highest and lowest profile measurement heights for stable stratification or the geometric mean for unstable stratification. The concentration-profile flux footprint depends on the ratio of the highest to the lowest measurement height, but is insensitive to the number of measurement levels. The concentration-profile flux footprint extends closer to the measurement location than does the 'equivalent’ eddy-covariance flux footprint, and the difference becomes more pronounced as the ratio of the profile measurement heights increases. The flux footprint for the Bowen-ratio technique is identical to that for a two-level profile measurement only for very limited circumstances. In the more general case, a flux footprint cannot be defined for the Bowen-ratio technique and the uniform upwind fetch required for representative flux measurements depends on the specific spatial distribution of surface fluxes.

Bowen ratio Eddy covariance Flux footprint Flux measurement Profile measurement Turbulent flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189.Google Scholar
  2. Dyer, A. J.: 1974, 'A Review of Flux-Profile Relationships', Boundary-Layer Meteorol. 7, 363-372.Google Scholar
  3. Elliot, W. P.: 1961, 'The Vertical Diffusion of Gas from a Continuous Source', Int. J. Air Water Pollut. 4, 33-46.Google Scholar
  4. Finn, D., Lamb, B., Leclerc, M. Y., and Horst, T. W.: 1996, 'Experimental Evaluation of Analytical and Lagrangian Surface Layer Flux Footprint Models', Boundary-Layer Meteorol. 80, 283-308.Google Scholar
  5. Foken, T. and Oncley, S.: 1995, 'Workshop on Instrumental and Methodical Problems of Land Surface Flux Measurements', Bull. Amer. Meteorol. Soc. 76, 1191-1193.Google Scholar
  6. Gash, J. H. C.: 1986, 'A Note on Estimating the Effect of Limited Fetch on Micrometeorological Evaporation Measurements', Boundary-Layer Meteorol. 35, 409-413.Google Scholar
  7. Gryning, S. E., van Ulden, A. P., and Larsen, S.: 1983, 'Dispersion from a Ground Level Source Investigated by a K Model', Quart. J. Roy. Meteorol. Soc. 109, 355-364.Google Scholar
  8. Heilman, J. L., Brittin, C. L., and Neale, C. M. U.: 1989, 'Fetch Requirements for Bowen Ratio Measurements of Latent and Sensible Heat Fluxes', Agric. For. Meteorol. 44, 262-273.Google Scholar
  9. Horst, T. W.: 1978, 'Estimation of Air Concentrations Due to the Suspension of Surface Contamination', Atmos. Environ. 12, 797-802.Google Scholar
  10. Horst, T. W.: 1979, 'Lagrangian Similarity Modeling of Vertical Diffusion from a Ground-Level Source', J. Appl. Meteorol. 18, 733-740.Google Scholar
  11. Horst, T. W. and Weil, J. C.: 1992, 'Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 59, 279-296.Google Scholar
  12. Horst, T. W. and Weil, J. C.: 1994, 'How Far is Far Enough? The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes', J. Atmos. Oceanic Tech. 11, 1018-1025.Google Scholar
  13. Horst, T. W. and Weil, J. C.: 1995, 'Corrigenda: How Far is Far Enough? The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes', J. Atmos. Oceanic Tech. 12, 447.Google Scholar
  14. Leclerc, M. Y. and Thurtell, G.W.: 1990, 'Footprint Predictions of Scalar Fluxes Using a Markovian Analysis', Boundary-Layer Meteorol. 52, 247-258.Google Scholar
  15. Nieuwstadt, F. T. M. and van Ulden, A. P.: 1978, 'A Numerical Study on the Vertical Dispersion of Passive Contaminants from a Continuous Source in the Atmospheric Surface Layer', Atmos. Environ. 12, 2119-2124.Google Scholar
  16. Ogawa, Y., Diosey, P. G., Uehara, K., and Ueda, H.: 1985, 'Wind Tunnel Observations of Flow and Diffusion under Stable Stratification', Atmos. Environ. 19, 65-74.Google Scholar
  17. Pasquill, F.: 1972, 'Some Aspects of Boundary Layer Description', Quart. J. Roy. Meteorol. Soc. 98, 469-494.Google Scholar
  18. Pasquill, F. and Smith, F. B.: 1983, Atmospheric Diffusion, 3rd ed., John Wiley & Sons, 437 pp.Google Scholar
  19. Schmid, H. P.: 1994, 'Source Areas for Scalars and Scalar Fluxes', Boundary-Layer Meteorol. 67, 293-318.Google Scholar
  20. Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: 1990, 'Footprint Prediction of Scalar Fluxes from Analytical Solutions of the Diffusion Equation', Boundary-Layer Meteorol. 50, 355-373.Google Scholar
  21. Stannard, D. I.: 1997, 'A Theoretically Based Determination of Bowen-Ratio Fetch Requirements', Boundary-Layer Meteorol. 83, 375-406.Google Scholar
  22. van Ulden, A. P.: 1978, 'Simple Estimates for Vertical Diffusion from Sources near the Ground', Atmos. Environ. 12, 2125-2129.Google Scholar
  23. Weil, J. C. and Horst, T. W.: 1992, 'Footprint Estimates for Atmospheric Flux Measurements in the Convective Boundary Layer', in S. E. Schwartz and W. G. N. Slinn (eds.), Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2, Hemisphere Publishing, pp. 717-728.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • T. W. Horst
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations