Advertisement

Boundary-Layer Meteorology

, Volume 90, Issue 3, pp 375–396 | Cite as

Stratified Atmospheric Boundary Layers

  • L. Mahrt
Article

Abstract

Various features of different stability regimes of the stable boundary layer are discussed. Traditional layering is examined in terms of the roughness sublayer, surface layer, local similarity, z-less stratification and the region near the boundary-layer top. In the very stable case, the strongest turbulence may be detached from the surface and generated by shear associated with a low level jet, gravity waves or meandering motions. In this case, similarity theory and the traditional concept of a boundary-layer break down. The elevated turbulence may intermittently recouple to the surface. Inability to adequately measure turbulent fluxes in very stable conditions limits our knowledge of this regime.

Intermittent turbulence Monin–Obukhov Nocturnal boundary layer Stable boundary layer Surface layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’, J. Atmos. Sci. 32, 766–778.Google Scholar
  2. Atlas, D., Metcalf, J. I., Richter, J. H., and Gossard, E. E.: 1970, ‘The Birth of “CAT” and Microscale Turbulence’, J. Atmos Sci. 27, 903–913.Google Scholar
  3. Beljaars, A. C. M. and Holtslag, A. A. M.: 1991, ‘Flux Parameterization over Land Surfaces for Atmospheric Models’, J. Appl. Meteorol. 30, 327–341.Google Scholar
  4. Beyrich, F., 1997: ‘Mixing Height Estimation from Sodar — A Critical Discussion’, Atm. Environ. 21, 3941–3953.Google Scholar
  5. Beyrich, F. and Kotroni, V.: 1993, ‘Estimation of Surface Stress over a Forest From Sodar Measurements and its Use to Parameterize the Stable Boundary-Layer Height’, Boundary-Layer Meteorol. 66, 93–104.Google Scholar
  6. Buajitti, K. and Blackadar, A.K.: 1957, ‘The Theoretical Studies of Diurnal Wind Structure Variation in the Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 83, 486–500.Google Scholar
  7. Businger, J. A.: 1973, ‘Turbulent Transfer in the Atmospheric Surface Layer’, in D. H. Haugen (ed.), Workshop on Micrometerology, American Meteorol. Soc., Boston, MA, pp. 67–100.Google Scholar
  8. Coulter, R. L.: 1990, ‘A Case Study of Turbulence in the Stable Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 52, 75–92.Google Scholar
  9. elage, Y.: 1997, ‘Parameterising Sub-Grid Scale Vertical Transport in Atmospheric Models Under Statically Stable Conditions’, Boundary-Layer Meteorol. 82, 23–48.Google Scholar
  10. Derbyshire, H.: 1990, “Nieuwstadt's Stable Boundary Layer Revisited’, Quart. J. Roy. Meteorol. Soc. 116, 127–158.Google Scholar
  11. Derbyshire, H.: 1995a, ‘Stable Boundary Layers: Observations, Models and Variability Part I: Modelling and Measurements’, Boundary-Layer Meteorol. 74, 19–54.Google Scholar
  12. Derbyshire, H.: 1995b, “Stable Boundary Layers: Observations, Models and Variability Part II: Data Analysis and Averaging Effects’, Boundary-Layer Meteorol. 75, 1–24.Google Scholar
  13. Dias, N. L., Brutsaert, W., and Wesley, M. L.: 1995, ‘Z-less Stratification under Stable Conditions’, Boundary-Layer Meteorol. 75, 175–187.Google Scholar
  14. Forrer, J. and Rotach, M. W.:1997, ‘On the Turbulence Structure in the Stable Boundary Layer over the Greenland Ice Sheet’, Boundary-Layer Meteorol. 85, 111–136.Google Scholar
  15. Garratt, J. R.,: 1992, The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.Google Scholar
  16. Goulden, M.L., Munger, J.W., Fan, S.M., and Daube, B.C.: 1996, ‘Measurements of Carbon Sequestration by Long-term Eddy Covariance: Methods and a Critical Evaluation of Accuracy’, Global Change Biology. 2, 169–182.Google Scholar
  17. Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Mirand, A. C., Meir, P., and Miranda, H.S.: 1996, ‘The Use of Eddy Covariance to Infer the Net Carbon Dioxide Uptake of Brazilian Rain Forest’, Global change biology 2, 209–217.Google Scholar
  18. Grant, A. L. M.: 1994, ‘Wind Profiles in the Stable Boundary Layer, and the Effect of Low Relief’, Quart. J. Roy. Meteorol. Soc. 120, 27–46.Google Scholar
  19. Grant, A. L. M.: 1997, ‘An Observational Study of the Evening Transition Boundary-Layer’, Quart. J. Roy. Meteorol. Soc. 123, 657–677.Google Scholar
  20. Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, ‘An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc.. 97, 168–180.Google Scholar
  21. Herring, J. and Métais, O.: 1989, ‘Numerical Experiments in Forced Stably Stratified Turbulence’, J. Fluid Mech. 220, 97–115.Google Scholar
  22. Hicks, B. B.: 1976, ‘Wind Profile Relationships from “Wangara” Experiments’, Quart. J. Roy. Meteorol. Soc. 102, 535–551.Google Scholar
  23. Hicks, B. B.: 1981, ‘An Examination of Turbulence Statistics in the Surface Layer’, Boundary-Layer Meteorol. 21, 389–402.Google Scholar
  24. Högström, U.: 1996, ‘Review of Some Basic Characteristics of the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 78, 215–246.Google Scholar
  25. Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, ‘Scaling the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 36, 201–209.Google Scholar
  26. Horst, T. W.: 1997, ‘A Simple Formula for Attenuation of Eddy Fluxes Measured with First-Order-Response Scalar Sensors’, Boundary-Layer Meteorol. 82, 219–233.Google Scholar
  27. Howell, J. F. and Sun, J.: 1999, ‘Surface-Layer Fluxes in Stable Conditions’, Boundary-Layer Meteorol., this issue.Google Scholar
  28. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815.Google Scholar
  29. Kim, J., and Mahrt, L.: 1992, ‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’, Tellus 44A, 381–394.Google Scholar
  30. King, J. C.: 1990, ‘Some Measurements of Turbulence over an Antarctic Ice Shelf’, Quart. J. Roy. Meteorol. Soc. 116, 379–400.Google Scholar
  31. Kondo, J., Kanechika, O., and Yasuda, N.: 1978, ‘Heat and Momentum Transfer under Strong Stability in the Atmospheric Surface Layer’, J. Atmos. Sci. 35, 1012–1021.Google Scholar
  32. Kristensen, L., Jensen, N. O. and Peterson, E. L.: 1982, ‘Lateral Dispersion of Pollutants in a Very Stable Atmosphere — The Effect of the Meandering’, Atmos. Environ. 15, 837–844.Google Scholar
  33. Kristensen, L., and Fitzjarrald, D.: 1984, ‘The Effect of Line Averaging on Scalar Flux Measurements’, J. Atmos. Oceanic Tech. 1, 138–146.Google Scholar
  34. Lee, X., and Black, T. A.: 1993, ‘Atmospheric Turbulence within and above a Douglas Fir Stand. Part II: Eddy Fluxes of Sensible Heat and Water Vapour’, Boundary-Layer Meteorol. 64, 369–390.Google Scholar
  35. Lee, X., Black, T.A., den Hartog, G., Neumann, H.H. Nesic, Z., and Olejnik, J.: 1996, ‘Carbon Dioxide Exchange and Nocturnal Processes over a Mixed Deciduous Forest’, Agric. For. Meteorol. 81, 13–29.Google Scholar
  36. Lee, X., Neuman, H. H., den Hartog, G., Fuentes, J. D., Black, T. A., Mickle, R. E., Yang, P. C., and Blanken, P. D.: 1997, ‘Observations of Gravity Waves in a Boreal Forest’, Boundary-Layer Meteorol. 84, 383–398.Google Scholar
  37. Lenschow, D.H., Li, X. S., Zhu, C. J., and Stankov, B. B.: 1987: ‘The Stably Stratified Boundary Layer over the Great Plains’ Part I. Boundary-Layer Meteorol. 42, 95–121.Google Scholar
  38. Lettau, H.: 1990, ‘The O’Niell Experiment of 1953’, Boundary-Layer Meteorol. 50, 1–9.Google Scholar
  39. Lilly, D. K.: 1983, ‘Stratified Turbulence and the Mesoscale Variability of the Atmosphere’, J. Atmos. Sci. 40, 749–761.Google Scholar
  40. Mahrt, L.: 1981, ‘The Early Evening Boundary Layer Transition’, Quart. J. Roy. Meteorol. Soc. 107, 329–343.Google Scholar
  41. Mahrt, L.: 1982, ‘Momentum Balance of Gravity Flows’, J. Atmos. Sci. 39, 2701–2711.Google Scholar
  42. Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’, J. Atmos. Sci. 42, 2333–2349.Google Scholar
  43. Mahrt, L.: 1987, ‘Grid-Averaged Surface Fluxes’, Mon. Wea. Rev. 115, 1550–1560.Google Scholar
  44. Mahrt, L., Heald, R.C., Lenschow, D.H., Stankov, B.B., and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.Google Scholar
  45. Mahrt, L., Vickers, D., Howell, J., Edson, J., Hare, J., Højstrup, and Wilczak, J.: 1996, ‘Sea Surface Drag Coefficients in RASEX’, J. Geo. Res. Oceans 101, 14,327–14,335.Google Scholar
  46. Mahrt, L., Sun, J., Blumen, W., Delany, T., and Oncley, S.: 1998, ‘Nocturnal Boundary-Layer Regimes’, Boundary-Layer Meteorol. 88, 255–278.Google Scholar
  47. Malhi, Y. S.: 1995, ‘The Significance of the Dual Solutions for Heat Fluxes Measured by the Temperature Fluctuation Method in Stable Conditions’, Boundary-Layer Meteorol. 74, 389–396.Google Scholar
  48. Moore, C.: 1986, ‘Frequency Response Corrections for Eddy Correlation Systems’, Boundary-Layer Meteorol. 37, 17–35.Google Scholar
  49. Nai-Ping, L., Neff, W. D., and Kaimal, J. C.: 1983: ‘Wave and Turbulence Structure in a Disturbed Nocturnal Inversion’, Boundary-Layer Meteorol. 26, 141–155.Google Scholar
  50. Nappo, C.J.: 1991, ‘Sporadic Breakdown of Stability in the PBL Over Simple and Complex Terrain’, Boundary-Layer Meteorol. 54, 69–87.Google Scholar
  51. Neu, U.: 1995, ‘A Parameterization of the Nocturnal Ozone Reduction in the Residual Layer by Vertical Downward Mixing During Summer Smog Situations Using Sodar Data’, Boundary-Layer Meteorol. 73, 189–193.Google Scholar
  52. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216Google Scholar
  53. Ohya, Y., Neff, D. E., and Meroney, R. N.: 1997, ‘Turbulence Structure in a Stratified Boundary Layer under Stable Conditions’, Boundary-Layer Meteorol. 83, 139–161.Google Scholar
  54. Ostdiek and Blumen, W.: 1997, ‘A Dynamic Trio: Inertial Oscillation, Deformation Frontogenesis, and the Ekman-Taylor Boundary Layer’, J. Atmos. Sci. 54, 190–1502.Google Scholar
  55. Parker, M. J. and Raman, S.: 1993, ‘A Case Study of the Nocturnal Boundary Layer over a Complex Terrain’, Boundary-Layer Meteorol. 66, 303–324.Google Scholar
  56. Poulos, G.: 1997, ‘The Role of Gravity Waves in Nocturnal Boundary Layer Variability’, in Twelfth Symposium on Boundary Layers and Turbulence, Amer. Meteorol. Soc., Vancouver, pp. 146–147.Google Scholar
  57. Rao, K. S. and Nappo, C. J.: 1998, ‘Turbulence and Dispersion in the Stable Planetary Boundary Layer’, in M. P. Singh and S. Raman (eds.), Advances in Fluid Mechanics Series: Dynamics of Atmospheric Flow, Computational Mechanics Publications, Southampton, U.K., pp. 39–92.Google Scholar
  58. Roach, W. T.: 1970, ‘On the Influence of Synoptic Development on the Production of High Level Turbulence’, Quart. J. Roy. Meteorol. Soc. 96, 413–429.Google Scholar
  59. Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J., Filho, A., Fisch, G., Filho, V., Ribeiro, M., Molion, L., Abreu de Sa, L., Nobre, J., Cabral, O., Patel, S., and de Moraes, C.: 1985, ‘Daily Variations of Temperature and Humidity within and above the Amazonian Forest’, Weather 40(4), 102–108.Google Scholar
  60. Smedman, A-S.: 1988, ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 44, 231–253.Google Scholar
  61. Smedman, A-S.: 1991, ‘Some Turbulence Characteristics in the Stable Atmospheric Boundary Layer’, J. Atmos. Sci. 48, 856–868.Google Scholar
  62. Smedman, A-S, Tjernström, H., and Högström, U.: 1993, ‘Analysis of the Turbulence Structure of a Marine Low-Level Jet’, Boundary-Layer Meteorol. 66, 105–126.Google Scholar
  63. Smedman, A-S., Bergström, H., and Högström, U.: 1995, ‘Spectra, Variances and Length Scales in a Marine Stable Boundary Layer Dominated by a Low Level Jet’, Boundary-Layer Meteorol. 76, 211–232.Google Scholar
  64. Smedman, A-S., Bergström, H., and Grisogano, B.: 1997, ‘Evolution of Stable Internal Boundary Layers over a Cold Sea’, J. Geophys. Res. 102, 1091–1099.Google Scholar
  65. Smeets, C. J. P. P., Duynkerke, P. G., and Vugts, H. F.: 1998, ‘Turbulence Characteristics of the Stable Boundary Layer over a Mid-Latitude Glacier, Part 1: A Combination of Katabatic and Large Scale Forcing Conditions’, Boundary-Layer Meteorol. 87, 117–145.Google Scholar
  66. Smith, B., and Mahrt, L.: 1981, ‘A Study of Boundary Layer Pressure Adjustments’, J. Atmos. Sci. 38, 334–346.Google Scholar
  67. Sorbjan, Z.: 1988, ‘Structure of the Stably-Stratified Boundary Layer during the SESAME-1979 Experiment’, Boundary-Layer Meteorol. 44, 255–266.Google Scholar
  68. Stull, R.B.: 1990, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, 666 pp.Google Scholar
  69. Sun, J., Desjardins, R., Mahrt, L., and MacPherson, J. I.: 1998, ‘Transport of Carbon Dioxide, Water Vapor and Ozone by Turbulence and Local Circulations’, J. Geophys. Res., to appear.Google Scholar
  70. Tjernström, M. and Smedman, A.-S.: 1993, ‘The Vertical Structure of the Coastal Marine Atmospheric Boundary Layer’, J. Geophys. Res. 98, 4809–4826.Google Scholar
  71. Townsend, A. A.: 1976, ‘The Structure of Turbulent Shear Flow’, Cambridge University Press, Cambridge, 429 pp.Google Scholar
  72. Van Ulden, A. P. and Wieringa, J.: 1996, ‘Atmospheric Boundary-Layer Research at Cabauw’, Boundary-Layer Meteorol. 78, 34–69.Google Scholar
  73. Vogelezang, D. H. P. and Holtslag, A. A. M.: 1996, ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’, Boundary-Layer Meteorol. 81, 245–269.Google Scholar
  74. Wyngaard, J. C.: 1973, ‘On Surface-Layer Turbulence’, in D. A. Haugen (ed.), Workshop on Micrometeorology, Boston, Amer. Meteorol. Soc., Boston.Google Scholar
  75. Zhong, S., Fast, J. D., and Bian, X: 1996, ‘A Case Study of the Great Plains Low-Level Jet using Wind Profiler Network Data and a High Resolution Mesoscale Model’, Mon. Wea. Rev. 124, 785–806.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • L. Mahrt
    • 1
  1. 1.College of Oceanic and Atmospheric SciencesOregon State UniversityCorvallisU.S.A.

Personalised recommendations