Antonie van Leeuwenhoek

, Volume 73, Issue 4, pp 331–371 | Cite as

Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences

  • Cletus P. Kurtzman
  • Christie J. Robnett

Abstract

Approximately 500 species of ascomycetous yeasts, including members of Candida and other anamorphic genera, were analyzed for extent of divergence in the variable D1/D2 domain of large subunit (26S) ribosomal DNA. Divergence in this domain is generally sufficient to resolve individual species, resulting in the prediction that 55 currently recognized taxa are synonyms of earlier described species. Phylogenetic relationships among the ascomycetous yeasts were analyzed from D1/D2 sequence divergence. For comparison, the phylogeny of selected members of the Saccharomyces clade was determined from 18S rDNA sequences. Species relationships were highly concordant between the D1/D2 and 18S trees when branches were statistically well supported.

Ascomycetous yeasts phylogeny ribosomal DNA systematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett JA, Payne RW & Yarrow D (1990) Yeasts: Characteristics and Identification, 2nd ed. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  2. Barns SM, Lane DJ, Sogin ML, Bibeau C & Weisburg WG (1991) Evolutionary relationships among pathogenic Candidaspecies and relatives. J. Bacteriol. 173: 2250–2255Google Scholar
  3. Billon-Grand G (1989) A new ascosporogenous yeast genus: Yamadazymagen. nov. Mycotaxon 35: 201–204Google Scholar
  4. Boekhout T, Kurtzman CP, O'Donnell K & Smith MTh (1994) Phylogeny of the yeast genera Hanseniaspora(anamorph Kloeckera), Dekkera(anamorph Brettanomyces), and Eeniellaas inferred from partial 26S ribosomal DNA nucleotide sequences. Int. J. Syst. Bacteriol. 44: 781–786Google Scholar
  5. Bruns TD, White TJ & Taylor JW (1991) Fungal molecular systematics. Ann. Rev. Ecol. Syst. 22: 525–564Google Scholar
  6. Cottrell M & Kock JLF (1989) The yeast family Lipomycetaceae Novák et Zsolt emend. van der Walt et al., and the genus Myxozymavan der Walt et al., 1. A historical account of its delimitation and 2. The taxonomic relevance of cellular long-chain fatty acid composition and other phenotypic characters. Syst. Appl. Microbiol. 12: 291–305Google Scholar
  7. Eriksson OE, Svedskog A & Landvik S (1993) Molecular evidence for the evolutionary hiatus between Saccharomyces cerevisiaeand Schizosaccharomyces pombe. Syst. Ascomycetum 11: 119–162Google Scholar
  8. Fuson GB, Presley HL & Phaff HJ (1987) Deoxyribonucleic acid base sequence relatedness among members of the yeast genus Kluyveromyces. Int. J. Syst. Bacteriol. 37: 371–379Google Scholar
  9. Giménez-Jurado G, Cidadão AJ & Beijn-van der Waaij A (1994) A novel heterothallic ascomycetous yeast species: Stephanoascus smithiae, teleomorph of Candida edax. Syst. Appl. Microbiol. 17: 237–246Google Scholar
  10. Golubev WI, Smith MTh, Poot GA & Kock JLF (1989) Species delineation in the genus NadsoniaSydow. Antonie van Leeuwenhoek 55: 369–382Google Scholar
  11. Guadet J, Julien J, Lafey JF & Brygoo Y (1989) Phylogeny of some Fusariumspecies, as determined by large subunit rRNA sequence comparison. Mol. Biol. Evol. 6: 227–242Google Scholar
  12. Hadrys H, Balick M & Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55–63Google Scholar
  13. Hausner G, Reid J & Klassen GR (1992) Do galeate-ascospore members of the Cephaloascaceae, Endomycetaceae and Ophiostomataceae share a common phylogeny? Mycologia 84: 870–881Google Scholar
  14. Hendriks L, Goris A, Van de Peer Y, Neefs J-M, Vancanneyt M, Kersters K, Berny J-F, Hennebert GL & De Wachter R (1992) Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunit RNA sequences. Syst. Appl. Microbiol. 15: 98–104Google Scholar
  15. Hillis DM & Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 42: 182–192Google Scholar
  16. Holzschu DL, Phaff HJ, Tredick J & Hedgecock D (1983) Pichia pseudocactophila, a new species of yeast occurring in necrotic tissue of columnar cacti in the North American Sonoran Desert. Can. J. Microbiol. 29: 1314–1322Google Scholar
  17. James SA, Cai J, Roberts IN & Collins MD (1997) A phylogenetic analysis of the genus Saccharomycesbased on 18S rRNA gene sequences: description ofSaccharomyces kunashirensissp. nov. and Saccharomyces martiniaesp. nov. Int. J. Syst. Bacteriol. 47: 453–460Google Scholar
  18. Kock JLF, van der Walt JP & Yamada Y (1995) Smithiozymagen. nov. (Lipomycetaceae). S. African J. Bot. 61: 232–233Google Scholar
  19. Kurtzman CP (1984a) Synonymy of the yeast genera Hansenulaand Pichiademonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie van Leeuwenhoek 50: 209–217Google Scholar
  20. — (1984b) Resolution of varietal relationships within the species Hansenula anomala, Hansenula bimundalisand Pichia nakazawaethrough comparisons of DNA relatedness. Mycotaxon 19: 271–279Google Scholar
  21. — (1987) Prediction of biological relatedness among yeasts from comparisons of nuclear DNA complementarity. Stud. Mycol. 30: 459–468Google Scholar
  22. — (1990) Candida shehatae-genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Antonie van Leeuwenhoek 57: 215–222Google Scholar
  23. — (1991) DNA relatedness among saturn-spored yeasts assigned to the genera Williopsisand Pichia. Antonie van Leeuwenhoek 60: 13–19Google Scholar
  24. — (1992) DNA relatedness among phenotypically similar species of Pichia. Mycologia 84: 72–76Google Scholar
  25. — (1993a) Systematics of the ascomycetous yeasts assessed from ribosomal RNA sequence divergence. Antonie van Leeuwenhoek 63: 165–174Google Scholar
  26. — (1993b) The systematics of ascomycetous yeasts defined from ribosomal RNA sequence divergence: theoretical and practical considerations. In: Reynolds DR & Taylor JW (Eds) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (pp 271–279). CAB International, Wallingford, UKGoogle Scholar
  27. — (1995) Relationships among the genera Ashbya, Eremothecium, Holleyaand Nematosporadetermined from rDNA sequence divergence. J. Ind. Microbiol. 14: 523–530Google Scholar
  28. Kurtzman CP & Phaff HJ (1987) Molecular taxonomy. In: Rose AH & Harrison JS (Eds) The Yeasts, Vol 1, Biology of Yeasts (pp 63–94). Academic Press, LondonGoogle Scholar
  29. Kurtzman CP & Robnett CJ (1991) Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomycesand Schwanniomycesdetermined from partial ribosomal RNA sequences. Yeast 7: 61–72Google Scholar
  30. — (1994a) Orders and families of ascosporogenous yeasts and yeast-like taxa compared from ribosomal RNA sequence similarities. In: Hawksworth, DL (Ed) Ascomycete Systematics: Problems and Perspectives in the Nineties (pp 249–258). Plenum Press, New YorkGoogle Scholar
  31. — (1994b) Synonymy of the yeast genera Wingeaand Debaryomyces. Antonie van Leeuwenhoek 66: 337–342Google Scholar
  32. — (1995) Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can. J. Bot. 73: S824–S830Google Scholar
  33. — (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 35: 1216–1223Google Scholar
  34. Kurtzman CP, Johnson CJ & Smiley MJ (1979) Determination of conspecificity of Candida utilisand Hansenula jadiniithrough DNA reassociation. Mycologia 71: 844–847Google Scholar
  35. Kurtzman CP, Smiley MJ, Johnson CJ, Wickerham LJ & Fuson GB (1980a) Two new and closely related heterothallic species, Pichia amylophilaand Pichia mississippiensis:Characterization by hybridization and deoxyribonucleic acid reassociation. Int. J. Syst. Bacteriol. 30: 208–216Google Scholar
  36. Kurtzman CP, Smiley MJ & Johnson CJ (1980b) Emendation of the genus IssatchenkiaKudriavzev and comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30: 503–513Google Scholar
  37. Lee F-L, Lee C-F, Okada S, Uchimura T & Kozaki M (1992) Chemotaxonomic comparison of Pichia farinosa, Pichia sorbitophilaand Candida cacaoi. Bull. Jpn. Fed. Culture Collections 8: 71–78Google Scholar
  38. Lee C-F, Lee F-L, Hsu W-H & Hsu WH (1993) DNA reassociation and electrokaryotype study of some Candidaspecies and synonymy of Candida terebra, Candida entomaeaand Candida veronae.Can. J. Microbiol. 39: 867–867Google Scholar
  39. Liu Z & Kurtzman CP (1991) Phylogenetic relationships among species of Williopsisand Saturnosporagen. nov. as determined from partial rRNA sequences. Antonie van Leeuwenhoek 60: 21–30Google Scholar
  40. Mendonça-Hagler LC, Hagler AN & Kurtzman CP (1993) Phylogeny of Metschnikowiaspecies estimated from partial rRNA sequences. Int. J. Syst. Bacteriol. 43: 368–373Google Scholar
  41. Messner R, Prillinger H, Ibl M & Himmler G (1995) Sequences of ribosomal genes and internal transcribed spacers move three plant parasitic fungi, Eremothecium ashbyi, Ashbya gossypiiand Nematospora coryli, towards Saccharomyces cerevisiae. J. Gen. Appl. Microbiol. 41: 31–42Google Scholar
  42. Meyer SA, Smith MT & Simione FP (1978) Systematics of HanseniasporaZikes and KloeckeraJanke. Antonie van Leeuwenhoek 44: 79–96Google Scholar
  43. Mikata K & Yamada Y (1995) Ogataea kodamae, a new combination for a methanol-assimilating yeast species, Pichia kodamaevan der Walt et Yarrow. Inst. Ferment. Osaka (IFO) Res. Commun. 17: 99–101Google Scholar
  44. Nakase T & Suzuki M (1985). Taxonomic studies on Debaryomyces hansenii(Zoph) Lodder et Kreger-van Rij and related species. I. Chemotaxonomic investigations. J. Gen. Appl. Microbiol. 31: 49–69Google Scholar
  45. Nishida H & Sugiyama J (1993) Phylogenetic relationships among Taphrina, Saitoella, and other higher fungi. Mol. Biol. Evol. 10: 431–436Google Scholar
  46. O'Donnell K (1993) Fusariumand its near relatives. In: Reynolds DR & Taylor JW (Eds) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics (pp 225–233). CAB International, Wallingford, UKGoogle Scholar
  47. Peterson SW & Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst. Appl. Microbiol. 14: 124–129Google Scholar
  48. Phaff HJ, Starmer WT, Tredick-Kline J & Aberdeen V (1987a) Pichia barkeri, a new yeast species occurring in necrotic tissue of Opuntia stricta. Int. J. Syst. Bacteriol. 37: 386–390Google Scholar
  49. Phaff HJ, Starmer WT & Tredick-Kline J (1987b) Pichia kluyverisensu lato-A proposal for two new varieties and a new anamorph. In: de Hoog GS, Smith MTh & Weijman ACM (Eds) The Expanding Realm of Yeast-like Fungi (pp 403–414). Elsevier, AmsterdamGoogle Scholar
  50. Phaff HJ, Starmer WT, Lachance MA, Aberdeen V & Tredick-Kline J (1992) Pichia caribaea, a new species of yeast occurring in necrotic tissue of cacti in the Caribbean area. Int. J. Syst. Bacteriol. 42: 459–462Google Scholar
  51. Phaff HJ, Blue J, Hagler AN & Kurtzman CP (1997) Dipodascus starmerisp. nov., a new species of yeast occurring in cactus necroses. Int. J. Syst. Bacteriol. 47: 307–312Google Scholar
  52. Price CW, Fuson GB & Phaff HJ (1978) Genome comparison in yeast systematics: Delimitation of species within the genera Schwanniomyces, Saccharomyces, Debaryomycesand Pichia. Microbiol. Rev. 42: 161–193Google Scholar
  53. Raeder U & Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17–20Google Scholar
  54. Reddy MS & Kramer CL (1975) A taxonomic revision of the Protomycetales. Mycotaxon 3: 1–50Google Scholar
  55. Smith MTh, Poot GA, Batenburg-van der Vegte WH & van der Walt JP (1995a) Species delimitation in the genus Lipomycesby nuclear genome comparison. Antonie van Leeuwenhoek 68: 75–87Google Scholar
  56. Smith MTh, van der Walt JP & Batenburg-van der Vegte WH (1995b) Babjeviagen. nov.-a new genus of the Lipomycetaceae. Antonie van Leeuwenhoek 67: 177–179Google Scholar
  57. Starmer WT, Phaff HJ, Tredick J, Miranda M & Aberdeen V (1984) Pichia antillensis, a new species of yeast associated with necrotic stems of cactus in the Lesser Antilles. Int. J. Syst. Bacteriol. 34: 350–354Google Scholar
  58. Suzuki M, Nakase T, Mori H, Toriumi H & Kurtzman CP (1992) Chemotaxonomic study on halophilic/halotolerant yeasts in the matured soy sauce mashes. Bull. Jpn. Fed. Cult. Collect. 8: 18–27Google Scholar
  59. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony. version 3.1.1. Illinois Natural History Survey. ChampaignGoogle Scholar
  60. Tengku Zainal Mulok TE (1988) Nuclear DNA base composition and base sequence complementarity of recently described Candidaspecies and strains of selected species. Thesis, Georgia State University, Atlanta, GAGoogle Scholar
  61. van der Walt JP, von Arx JA, Ferreira NP & Richards PDG (1987) Zygozymagen. nov., a new genus of the Lipomycetaceae. Syst. Appl. Microbiol. 9: 115–120Google Scholar
  62. Vaughan-Martini A (1989) Saccharomyces paradoxuscomb. nov., a newly separated species of the Saccharomyces sensu strictocomplex based upon nDNA/nDNA homologies. Syst. Appl. Microbiol. 12: 179–182Google Scholar
  63. Vaughan-Martini A & Kurtzman CP (1985) Deoxyribonucleic acid relatedness among species of the genus Saccharomycessensu stricto. Int. J. Syst. Bacteriol. 35: 508–511Google Scholar
  64. Walker WF (1985) 5S ribosomal RNA sequences from ascomycetes and evolutionary implications. Syst. Appl. Microbiol. 6: 48–53Google Scholar
  65. Wickerham LJ (1951) Taxonomy of yeasts. USDA, Washington, D. C. Tech. Bull. 1029Google Scholar
  66. Wilmotte A, Van de Peer Y, Goris A, Chapelle S, De Baere R, Nelissen B, Neefs J-M, Hennebert GL & De Wachter R (1993) Evolutionary relationships among higher fungi inferred from small ribosomal subunit RNA sequence analysis. Syst. Appl. Microbiol. 16: 436–444Google Scholar
  67. Yamada Y & Banno I (1987) Hasegawaeagen. nov., an ascosporogenous yeast genus for the organisms whose asexual reproduction is by fission and whose ascospores have smooth surfaces without papillae and which are characterized by the absence of coenzyme Q and by the presence of linoleic acid in cellular fatty acid composition. J. Gen. Appl. Microbiol. 33: 295–298Google Scholar
  68. Yamada Y & Nakase T (1985) Waltomycesa new ascosporogenous yeast genus for the Q10-equipped, slime-producing organisms whose asexual reproduction is by multilateral budding and whose ascospores have smooth surfaces. J. Gen. Appl. Microbiol. 31: 491–492Google Scholar
  69. Yamada Y & Nogawa C (1995) Kawasakiagen. nov. for Zygozyma arxii, the Q9-equipped species in the genus Zygozyma(Lipomycetaceae). Bull. Fac. Agric. Shizuoka Univ. 45: 31–34Google Scholar
  70. Yamada Y, Maeda K & Banno I (1992a) The phylogenetic relationships of the Q9-equipped, spheroidal ascospore-forming Pichiaspecies based on the partial sequences of 18S and 26S ribosomal RNAs. J. Gen. Appl. Microbiol. 38: 247–252Google Scholar
  71. Yamada Y, Maeda K, Banno I & van der Walt JP (1992b) An emendation of the genus DebaryomycesLodder et Kreger-van Rij and the proposals of two new combinations, Debaryomyces carsoniiand Debaryomyces etchellsii(Saccharomycetaceae). J. Gen. Appl. Microbiol. 38: 623–626Google Scholar
  72. Yamada Y, Maeda K & Banno I (1992c) An emendation of KloeckerasporaNiehaus with the type species Kloeckeraspora osmophilaNiehaus, and the proposals of two new combinations, Kloeckeraspora occidentalisand Kloeckeraspora vineae(Saccharomycetaceae). Bull. Jpn. Fed. Culture Collections 8: 79–85Google Scholar
  73. Yamada Y, Maeda K & Mikata K (1994a) The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichiaspecies, formerly classified in the genus HansenulaSydow, et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): The proposals of three new genera, Ogataea, Kuraishiaand Nakazawaea. Biosci. Biotechnol. Biochem. 58: 1245–1257Google Scholar
  74. Yamada Y, Matsuda M, Maeda K, Sakakibara C & Mikata K (1994b) The phylogenetic relationships of the saturn-shaped ascospore-forming, species of the genus WilliopsisZender and related genera based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): The proposal of Komagataeagen. nov. Biosci. Biotech. Biochem. 58: 1236–1244Google Scholar
  75. Yamada Y, Matsuda M, Maeda K & Mikata K (1995a) The phylogenetic relationships of methanol-assimilating yeasts based on the partial sequences of 18S and 26S ribosomal RNAs: The proposal of Komagataellagen. nov. (Saccharomycetaceae). Biosci. Biotechnol. Biochem. 59: 439–444Google Scholar
  76. Yamada Y, Suzuki T, Matsuda M & Mikata K (1995b) The phylogeny of Yamadazyma ohmeri(Etchells et Bell) Billon-Grand based on partial sequences of 18S and 26S ribosomal RNAs: the proposal of Kodamaeagen. nov. (Saccharomycetaceae). Biosci. Biotechnol. Biochem. 59: 1172–1174Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Cletus P. Kurtzman
    • 1
  • Christie J. Robnett
    • 1
  1. 1.Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research ServiceU.S. Department of AgriculturePeoriaUSA

Personalised recommendations