Antonie van Leeuwenhoek

, Volume 74, Issue 1–3, pp 49–58

Cell envelope composition and organisation in the genus Rhodococcus

  • Iain C. Sutcliffe
Article

Abstract

A knowledge of the organisation of the rhodococcal cell envelope is of fundamental importance if the environmental and biotechnological significance of these bacteria are to be understood and succesfully exploited. The genus Rhodococcus belongs to a distinctive suprageneric taxon, the mycolata, which includes among others the genera Corynebacterium, Mycobacterium and Nocardia. Members of this taxon exhibit an unusual complexity in their cell envelope composition and organisation compared to other Gram-positive bacteria. Models that describe the architecture of the mycobacterial cell envelope are extrapolated here to provide a model of the rhodococcal cell envelope. The rhodococcal cell envelope is dominated by the presence of an arabinogalactan cell wall polysaccharide and large 2-alkyl 3-hydroxy branched-chain fatty acids, the mycolic acids, which are covalently assembled into a peptidoglycan–arabinogalactan–mycolic acid matrix. This review further emphasises that the mycolic acids in this complex form the basis of an outer lipid permeability barrier. The localisation and roles of other cell envelope components, notably complex free lipids, lipoglycans, proteins and lipoproteins are also considered.

arabinogalactan; cell wall; lipoglycan; Mycobacterium; 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alshamaony L, Goodfellow M & Minnikin DE (1976) Free mycolic acids as criteria in the classification of Nocardia and the & #x2019;rhodochrous & #x2019; complex. J. Gen. Microbiol. 92: 188–199Google Scholar
  2. Alvarez HM, Mayer F, Fabritius D & Steinb & #x00FC;chel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165: 377–386Google Scholar
  3. Asselineau C & Asselineau J (1978) Trehalose-containing glycolipids. Progr. Chem. Fats other Lipids 16: 59–99Google Scholar
  4. Atrat PG, Wagner B, Wagner M & Schumann G (1992) Localization of the cholesterol oxidase in Rhodococcus erythropolis IMET 7185 studied by immunoelectron microscopy. J. Steroid Biochem. Molec. Biol. 42: 193–200Google Scholar
  5. Barry CE & Mdluli K (1996) Drug sensitivity and environmental adaption of mycobacterial cell wall components. Trends Microbiol. 4: 275–281Google Scholar
  6. Barton MD, Goodfellow M & Minnikin DE (1989) Lipid composition in the classification of Rhodococcus equi. Zbl. Bakteriol. 272: 154–170Google Scholar
  7. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ & Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276: 1420–1422Google Scholar
  8. Bendinger B, Rijnaarts HHM, Altendorf K & Zehnder AJB (1993) Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence of and chain length of mycolic acids. Appl. Env. Microbiol. 59: 3973–3977Google Scholar
  9. Besra GS, Khoo K-H, McNeil MR, Dell A, Morris HR & Brennan PJ (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34: 4257–4266Google Scholar
  10. Brennan PJ & Nikaido H (1995) The envelope of mycobacteria. Ann. Rev. Biochem. 64: 29–63Google Scholar
  11. Briglia M, Rainey FA, Stackebrandt E, Schraa G & Salkinoja-Salonen MS (1996) Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6-trichlorophenol. Int. J. Syst. Bacteriol. 46: 23–30Google Scholar
  12. Chun J, Kang S-O, Hah YC & Goodfellow M (1996) Phylogeny of mycolic acid-containing actinomycetes. J. Ind. Microbiol. 17: 205–213Google Scholar
  13. Chun J, Blackall LL, Kang S-O, Hah YC & Goodfellow M(1997) A proposal to reclassify Nocardia pinensis Blackall et al. as Skermania piniformis gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47: 127–131Google Scholar
  14. Daffe M & Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39: 131–203Google Scholar
  15. Daffe M, McNeil M & Brennan PJ (1993) Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr. Res. 249: 383–398Google Scholar
  16. de Almeida ET & Ioneda T (1989) Composition and toxicity of lipids from Rhodococcus rhodochrous grown on medium containing galactose, glucose or mannose. Biochim. Biophys. Acta 1005: 45–50Google Scholar
  17. Delmas C, Gilleron M, Brando T, Vercellone A, Gheorghiu M, Riviere M & Puzo G (1997) Comparative structural analysis of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterisation and localisation of succinates. Glycobiology 7: 811–817Google Scholar
  18. Dufrêne YF, van der Wal A, Norde W & Rouxhet PG (1997) X-ray photoelectron spectroscopy analysis of whole cells and isolated cell walls of Gram-positive bacteria: comparison with biochemical analysis. J. Bacteriol. 179: 1023–1028Google Scholar
  19. Durand E, Welby M, Lan & #x00E9;elle G & Tocanne J-F (1979) Phase behaviour of cord factor and related bacterial glycolipid toxins. A monolayer study. Eur. J. Biochem. 93: 103–112Google Scholar
  20. Fischer W (1994) Lipoteichoic acids and lipoglycans. In: (Ghuysen J-M & Hakenbeck R (Eds) New Comprehensive Biochemistry, Vol. 27, Bacterial Cell Wall (pp 199–215). Elsevier Science, AmsterdamGoogle Scholar
  21. Flaherty C, Minnikin DE & Sutcliffe IC (1996) A chemotaxonomic study of the lipoglycans of Rhodococcus rhodnii N445 (NCIMB 11279). Zbl. Bakteriol. 285: 11–19Google Scholar
  22. Fujioka M, Koda S & Morimoto Y (1985) Novel glycosidic linkage between arabinogalactan and peptidoglycan in the cell wall skeleton of Nocardia rubra AN-115. J. Gen. Microbiol. 131: 1323–1329Google Scholar
  23. Garrison RG, Mirikitani FK & Lane JW (1983) Fine structural studies of Rhodococcus species. Microbios 36: 183–190Google Scholar
  24. Goodfellow M (1992) The family Nocardiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Prokaryotes (pp 1188–1213). Springer-Verlag, New YorkGoogle Scholar
  25. Hunter SW, Gaylord H & Brennan PJ (1986) Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J. Biol. Chem. 261: 12345–12351Google Scholar
  26. Ioneda T & Ono SS (1996) Chromatographic and mass spectrometric analyses of 1-monomycolyl glycerol fraction from Rhodococcus lentifragmentus as per-O-benzoyl derivatives. Chem. Phys. Lipids 81: 11–19Google Scholar
  27. Khoo K-H, Dell A, Morris HR, Brennan PJ & Chatterjee D (1995) Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology 5: 117–127.Google Scholar
  28. Klatte S, Kroppenstedt RM & Rainey FA (1994) Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst. Appl. Microbiol. 17: 355–360Google Scholar
  29. Koronelli TV (1988) Investigation of the lipids of saprophytic mycobacteria in the U.S.S.R. J. Chromatog. 440: 479–486Google Scholar
  30. Kretschmer A, Bock H & Wagner F (1982) Chemical and physical characterisation of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Env. Microbiol. 44: 864–870Google Scholar
  31. Kurane R, Hatamochi K, Kakuno T, Kiyohara M, Tajima T, Hirano M & Taniguchi Y (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Biosci. Biotech. Biochem. 59: 1652–1656Google Scholar
  32. Lang S & Philp J (1998) Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74: 59–70Google Scholar
  33. Matsunaga I, Oka S, Fujiwara N & Yano I (1996) Relationship between induction of macrophage chemotactic factors and formation of granulomas caused by mycolyl glycolipids from Rhodococcus ruber (Nocardia rubra). J. Biochem. 120: 663–670Google Scholar
  34. Minnikin D E (1982) Lipids: Complex lipids, their chemistry, biosynthesis and roles. In: Ratledge C & Stanford JL (Eds) The Biology of the Mycobacteria (pp 95–184). Academic Press, LondonGoogle Scholar
  35. Minnikin DE (1991) Chemical principles in the organization of lipid components in the mycobacterial cell envelope. Res. Microbiol. 142: 423–427Google Scholar
  36. Minnikin D E & O & #x2019;Donnell A G (1984) Actinomycete envelope lipid and peptidoglycan composition. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes (pp 337–388). Academic Press, LondonGoogle Scholar
  37. Moormann M, Z & #x00E4;hringer U, Moll H, Kaufmann R, Schmid R & Altendorf K (1997) A new glycosylated lipopeptide incorporated into the cell wall of a smooth variant of Gordona hydrophobica. J. Biol. Chem. 272: 10729–10738Google Scholar
  38. Mukhopadhyay S, Basu D & Chakrabarti P (1997) Characterization of a porin from Mycobacterium smegmatis. J. Bacteriol. 179: 6205–6207Google Scholar
  39. Niederweis M, Maier E, Lichtinger T, Benz R & Kr & #x00E4;mer R (1995) Identification of channel-forming activity in the cell wall of Corynebacterium glutamicum J. Bacteriol. 177: 5716–5718Google Scholar
  40. Nigou J, Gilleron M, Cahuzac B, Boun & #x00E9;ry J-D, Herold M, Thurnher M & Puzo G (1997) The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis Bacillus Calmette Gu & #x00E9;rin. Heterogeneity, structure and role in the regulation of cytokine secretion. J. Biol. Chem. 272: 23094–23103Google Scholar
  41. Powalla M, Lang S & Wray V (1989) Penta-and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl. Microbiol. Biotechnol. 31: 473–479Google Scholar
  42. Rainey FA, Burghardt J, Kroppenstedt RM, Klatte S & Stackebrandt E (1995) Phylogenetic analysis of the genera Rhodococcus and Nocardia and evidence for the evolutionary origin of the genus Nocardia from within the radiation of Rhodococcus species. Microbiology 141: 523–528Google Scholar
  43. Stephens GM & Dalton H (1987) Is toxin production by coryneform bacteria linked to their ability to utilize hydrocarbons? Trends Biotechnol. 5: 5–7Google Scholar
  44. Sunairi M, Iwabuchi N, Yoshizawa Y, Murooka H, Morisaki H & Nakajima M (1997) Cell-surface hydrophobicity and scum formation of Rhodococcus rhodochrous strains with different colonial morphologies. J. Appl. Bacteriol. 82: 204–210Google Scholar
  45. Sutcliffe IC (1994) The lipoteichoic acids and lipoglycans of Grampositive bacteria: a chemotaxonomic perspective. Syst. Appl. Microbiol. 17: 467–480Google Scholar
  46. Sutcliffe IC (1995) Identification of a lipoarabinomannan-like lipoglycan in Corynebacterium matruchotii. Arch. Oral Biol. 40: 1119–1124Google Scholar
  47. Sutcliffe IC (1997) Macroamphiphilic cell envelope components of Rhodococcus equi and closely related bacteria. Vet. Microbiol. 56: 287–299Google Scholar
  48. Sutcliffe IC & Alderson G (1995) A chemotaxonomic appraisal of the distribution of lipomannans within the genus Micrococcus. FEMS Microbiol. Letts. 133: 233–237Google Scholar
  49. Sutcliffe IC & Russell RRB (1995) Lipoproteins of Gram-positive bacteria. J. Bacteriol. 177: 1123–1128Google Scholar
  50. Takai S, Iie M, Watanabe Y, Tsubaki S & Sekizaki T (1992) Virulence-associated 15-to 17-kilodalton antigens in Rhodococcus equi: temperature-dependent expression and location of the antigens. Infect. Immun. 60: 2995–2997Google Scholar
  51. Takaichi S, Tamura Y, Azegami K, Yamamoto Y & Ishidsu J-I (1997) Carotenoid glucoside mycolic acid esters from the nocardioform actinomycetes, Rhodococcus rhodochrous. Phytochem. 45: 505–508Google Scholar
  52. Tan C, Prescott JF, Patterson MC & Nicholson VM (1995) Molecular characterization of a lipid-modified virulence-associated protein of Rhodococcus equi and its potential in protective immunity. Can. J. Vet. Res. 59: 51–59Google Scholar
  53. Tomiyasu I, Toriyama S, Yano I & Masui M (1981) Changes in molecular species composition of nocardomycolic acids in Nocardia rubra by the growth temperature. Chem. Phys. Lipids 28: 41–54Google Scholar
  54. Tomiyasu I & Yano I (1984) Isonicotinic acid hydrazide induced changes and inhibition in mycolic acid synthesis in Nocardia and related taxa. Arch. Microbiol. 137: 316–323Google Scholar
  55. Trias J, Jarlier V & Benz R (1992) Porins in the cell wall of mycobacteria. Science 258: 1479–1481Google Scholar
  56. Uchida K & Aida K (1979) Taxonomic significance of cell-wall acyl type in Corynebacterium–Mycobacterium–Nocardia group by a glycolate test. J. Gen. Appl. Microbiol. 25: 169–183Google Scholar
  57. Uchida Y, Tsuchiya R, Chino M, Hirano J & Tabuchi T (1989) Extracellular accumulation of mono-and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric. Biol. Chem. 53: 757–763Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Iain C. Sutcliffe
    • 1
  1. 1.Fleming Building, School of Health SciencesThe University of SunderlandSunderlandUK

Personalised recommendations