Boundary-Layer Meteorology

, Volume 90, Issue 1, pp 155–167 | Cite as

A Density Correction for Lagrangian Particle Dispersion Models

  • Andreas Stohl
  • David J. Thomson


Current Lagrangian particle dispersion models, used to simulate the dispersion of passive tracers in the turbulent planetary boundary layer (PBL), assume that the density is constant within the PBL. In deep PBLs, where the density at the boundary-layer top may be lower by more than 20% than at the surface, this assumption leads to errors in the tracer concentrations on the order of 10%. In the presence of a vertical wind shear, this also leads to inaccurate calculations of the horizontal tracer transport. To remove this deficiency, a Langevin equation is presented that contains a density correction term. The effect of the density correction is studied using data from a large-scale tracer experiment. It is found that for this experiment, the main effect of the density correction is an increase in the surface tracer concentrations, whereas the horizontal tracer transport patterns remain largely unaffected.

Density correction Dispersion models Lagrangian models Particle models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumann, K. and Stohl, A.: 1997, ‘Validation of a Long-Range Trajectory Model Using Gas Balloon Tracks from the Gordon Bennett Cup 95’, J. Appl. Meteorol. 36, 711–720.Google Scholar
  2. ECMWF: 1995, User Guide to ECMWF Products 2. 1. Meteorological Bulletin M3. 2. ECMWF, Reading, U.K.Google Scholar
  3. Ferber, G. J., Heffter, J. L., Draxler, R. R., Lagomarsino, R. J., Thomas, F. L., Dietz, R. N., and Benkovitz, C. M.: 1986, ‘Cross-Appalachian Tracer Experiment (CAPTEX 83)’, Final Rep. NOAA Tech. Memo. ERL ARL-142, Air Resources Laboratory, NOAA Environmental Research Laboratories, Silver Spring, MD, 60 pp.Google Scholar
  4. Hanna, S. R.: 1982, ‘Applications in Air Pollution Modeling’, in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publishing Company, Dordrecht, 358 pp.Google Scholar
  5. Legg, B. J. and Raupach, M. R.: 1982, ‘Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance’, Boundary-Layer Meteorol. 24, 3–13.Google Scholar
  6. Ley, A. H. and Thomson, D. J.: 1983, ‘A Random Walk Model of Dispersion in the Diabatic Surface Layer’, Quart. J. Roy. Meteorol. Soc. 109, 867–880.Google Scholar
  7. Poli, A. and Cirillo, M. C.: 1993, ‘On the Use of the Normalized Mean Square Error in Evaluating Dispersion Model Performance’, Atmos. Environ. 27A, 2427–2434.Google Scholar
  8. Rodean, H.: 1996, ‘Stochastic Lagrangian Models of Turbulent Diffusion’, Meteorological Monographs 26(48), American Meteorological Society, Boston, U.S.A.Google Scholar
  9. Stohl, A.: 1996, ‘The FLEXPART Particle Diffusion Model — Scientific Description and Technical Documentation’, Report to the Central Institute of Meteorology and Geodynamics, Hohe Warte 38, 1190 Wien, Austria. Available as an updated user guide via the internet from http://www. forst. uni-muenchen. de/LST/METEOR/stohl/flexpart. html.Google Scholar
  10. Stohl, A.: 1998, ‘Computation, Accuracy and Applications of Trajectories — A Review and Bibliography’, Atmos. Environ. 32, 947–966.Google Scholar
  11. Stohl, A., Hittenberger, M., and Wotawa, G.: 1998, ‘Validation of the Lagrangian Particle Dispersion Model FLEXPART Against Large-Scale Tracer Experiments’, Atmos. Environ., in press.Google Scholar
  12. Stohl, A. and Seibert, P.: 1997, ‘Accuracy of Trajectories as Determined from the Conservation of Meteorological Tracers’, Quart. J. Roy. Meteorol. Soc. 125, 1465–1484.Google Scholar
  13. Stohl, A., Wotawa, G., Seibert, P., and Kromp-Kolb, H.: 1995, ‘Interpolation Errors in Wind Fields as a Function of Spatial and Temporal Resolution and their Impact on Different Types of Kinematic Trajectories’, J. Appl. Meteorol. 34, 2149–2165.Google Scholar
  14. Thomson, D. J.: 1995, ‘Discussion’, Atmos. Environ. 29, 1343.Google Scholar
  15. Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’, J. Fluid Mech. 180, 529–556.Google Scholar
  16. Uliasz, M.: 1994, ‘Lagrangian Particle Dispersion Modeling in Mesoscale Applications’, in P. Zannetti (ed.), Environmental Modeling, Vol. II, Computational Mechanics Publications, Southampton, U.K., pp. 71–101.Google Scholar
  17. Venkatram, A.: 1998, ‘Response’, Atmos. Environ. 32, 259.Google Scholar
  18. Venkatram, A.: 1993, ‘The Parameterization of the Vertical Dispersion of a Scalar in the Atmospheric Boundary Layer’, Atmos. Environ. 27A, 1963–1966.Google Scholar
  19. Vogelezang, D. H. P. and Holtslag, A. A. M.: 1996, ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’, Boundary-Layer Meteorol. 81, 245–269.Google Scholar
  20. Wilson, J. D., Legg, B. J., and Thomson, D. J.: 1983, ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Scale’, Boundary-Layer Meteorol. 27, 163–169.Google Scholar
  21. Wilson, J. D. and Sawford, B. L.: 1996, Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere’, Boundary-Layer Meteorol. 78, 191–210.Google Scholar
  22. Wotawa, G. and Stohl, A.: 1997, ‘Boundary Layer Heights and Surface Fluxes of Momentum and Heat Derived from ECMWF Data for Use in Pollutant Dispersion Models — Problems with Data Accuracy’, in S.-E. Gryning, F. Beyrich, and E. Batchvarova (eds.), The Determination of the Mixing Height — Current Progress and Problems, EURASAP Workshop Proceedings, 1–3 October 1997, Risø National Laboratory, Denmark.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Andreas Stohl
    • 1
  • David J. Thomson
    • 2
  1. 1.Lehrstuhl für Bioklimatologie und ImmissionsforschungLudwig-Maximilians-Universität MünchenFreising-WeihenstephanGermany
  2. 2.Meteorological OfficeBerkshireU.K.

Personalised recommendations