Advertisement

Astrophysics and Space Science

, Volume 252, Issue 1–2, pp 279–287 | Cite as

Masers, Lasers and the Interstellar Medium

  • Vladimir Strelnitski
Article

Abstract

This paper discusses recent results obtained by myself and my colleagues in three domains of astrophysics: interstellar supersonic turbulence, circumstellar disks, and natural masers and lasers. S.A. Kaplan, S.B. Pikelner, and I.S. Shklovskii were among those who, 30-40 years ago, laid the foundation of these domains.

H2O masers become an effective probe of supersonic turbulence associated with mass outflow from very young stars. They demonstrate a very low (≲1) fractal dimension of the spatial set on which turbulence dissipates its kinetic energy, and, thereby, a strong intermittency of the turbulence. They also indicate that supersonic turbulence, like incompressible turbulence, has an inner scale, on which the bulk of turbulent energy dissipates in low-Mach, random shocks. H2O masers themselves find thereby a new pumping source in these random shocks.

Masers in hydrogen recombination lines, discovered 8 years ago, originate in a circumstellar disk surrounding a massive star MWC 349A. They give a possibility to investigate kinematics and structure of the disk. Far-infrared nydrogen recombination lines, recently detected in MWC349A from the Kuiper Airborn Observatory, proved to be amplified as well. They are the first known natural amplifiers of electromagnetic waves in the laser wavelength domain. Analysis of their radiation, along with the radiation in other recombination lines, gives a possible key to understanding the lack of optical lasers in the Universe.

masers - radio lines stars - stars individual (MWC349A) - interstellar medium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J., Reid, M.J., Moran, J.M., & Strelnitski, V.S.: 1997, to be submitted to the Ap. J. Google Scholar
  2. Gordon, M.: 1992, Ap. J. 387, 701Google Scholar
  3. Frish, U., Sulem, P.L., and Nelkin, M.: 1978, J. Fluid Mech. 87, 719Google Scholar
  4. Fleck, R.C.: Jr. 1981, Ap. J. (Letters) 246, L151Google Scholar
  5. Gwinn, C.: 1994, Ap. J. 429, 241Google Scholar
  6. de Vaucouleurs, G.:, Science 167, 1203Google Scholar
  7. Dickman, R.L: 1985, ‘Protostars and Planets. II’ in D.C. Black & M.S. Matthews, ed(s).,, Univ. of Arizona Press: Tucson, 150Google Scholar
  8. Hamann, F. & Simon, M.: 1986, Ap. J. 311, 909Google Scholar
  9. Kaplan, S.A.: 1954a, Doklady Akademii Nauk SSSR 94, 699Google Scholar
  10. Kaplan, S.A.: 1954b, JETP 27, 699Google Scholar
  11. Kaplan, S.A.: 1966, Interstellar Gas Dynamics, Pergamon Press: OxfordGoogle Scholar
  12. Cohen, M., Bieging, J.H., Dreher, J.W., & Welch, W.J.: 1985, Ap. J. 292, 249Google Scholar
  13. Larson, R.B.: 1981, M.N.R.A.S. 194, 809Google Scholar
  14. Mandelbrot, B.B.: 1983, The Fractal Geometry of Nature, Freeman: New YorkGoogle Scholar
  15. Martin-Pintado, J., Bachiller, R., Thum, C., & Walmsley, C.M: 1989, Ap. J. 215, L13Google Scholar
  16. Mioshi, M., Moran, J., Herrnstein, J., Greenhill, L., Nakai, N., Diamond, P., & Inoue, M.: 1995, Nature 373, 127Google Scholar
  17. Pikelner, S.B. & Strelnitski, V.S.: 1976, Astrophys,& Space Science 39, L19Google Scholar
  18. Plambeck, R.L., Wright, M.C.H., & Carlstrom, J.E.: 1990, Ap. J. 348, L65Google Scholar
  19. Ponomarev, V.O., Smith, H.A., & Strelnitski, V.S.: 1994, Ap. J. 424, 976Google Scholar
  20. Sargent, A.I. & Beckwit, S.V.W.: April 1993, Physics Today Google Scholar
  21. Scalo, J.M.: 1987, ‘’ in D.J. Hollenbach and H.A. Thronson, ed(s)., Interstellar Processes, Reidel Publishing Co., 349Google Scholar
  22. Strelnitski, V.S., Smith, H.A., Haas, M.R., Colgan, S.W.J., Erickson, E.F., Geis, N., Hollenbach, D.J., & Townes, C.H.: 1995, ‘’ in M.R. Haas, J.A. Davidson,& E.F. Erickson, ed(s)., Proc. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, ASP: San Francisco, 271Google Scholar
  23. Strelnitski, V.S., Smith, H.A., & Ponomarev, V.O.: 1996a, Ap. J. 470, 1134Google Scholar
  24. Strelnitski, V.S., Haas, M.R., Smith, H.A., Erickson, E.F., Colgan, S.W.J., & Hollenbach, D.J.: 1996b, Science 272, 1459Google Scholar
  25. Strelnitski, V.S., Moran, J.M., Reid, M.J., & Alexander, J.V.: 1997, to be submitted to the Ap. J. Google Scholar
  26. Thum, C., Martin-Pintado, J. & Bachiller, R.: 1992, Astr. Ap. 256, 507Google Scholar
  27. Thum, C., Matthews, H.E., Harris, A.I., Tacconi, L.J., huster, K.F., & Martin-Pintado, J.: 1994a, Astr. Ap. 288, L25Google Scholar
  28. Thum, C., Matthews, H.E., Martin-Pintado, J., Serabyn, E., Planesas, P., & Bachiller, R.: 1994b, Astr. Ap.,, 283 582Google Scholar
  29. von Hörner, S.: 1951, Zs. f. Ap. 30, 17Google Scholar
  30. von Weizsäcker, C.F.: 1951, Ap. J. 114, 165Google Scholar
  31. Walker, R.C: 1984, Ap. J. 280, 618Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Vladimir Strelnitski
    • 1
  1. 1.Smithsonian Institution & New Mexico Institute of Mining and TechnologyUSA

Personalised recommendations