Advertisement

Boundary-Layer Meteorology

, Volume 87, Issue 1, pp 69–99 | Cite as

The Validity of Similarity Theory in the Roughness Sublayer Above Forests

  • I. J. Simpson
  • G. W. Thurtell
  • H. H. Neumann
  • G. Den Hartog
  • G. C. Edwards
Article

Abstract

Flux-gradient relationships based upon similarity theory have been reported to severely underestimate scalar fluxes in the roughness sublayer above forests, as compared to independent flux estimates (for example, eddy covariance or energy balance measurements). This paper presents the results of a unique three-month investigation into the validity of similarity theory in the roughness sublayer above forests. Eddy covariance and flux-gradient measurements of carbon dioxide (CO2) exchange were compared above a mixed deciduous forest at Camp Borden, Ontario, both before and after leaf senescence. The eddy covariance measurements used a Li-Cor infrared gas analyzer, and the flux-gradient (similarity theory) measurements featured a tunable diode laser Trace Gas Analysis System (TGAS). The TGAS resolved the CO2 concentration difference to 300 parts per trillion by volume (ppt) based upon a half-hour sampling period. The measured enhancement factor γ (the ratio of independent flux estimates, in this case eddy covariance, to similarity theory fluxes) was smaller and occurred closer to the canopy than in most previous investigations of similarity theory. Very good agreement between the eddy covariance and similarity theory fluxes was found between 1.9 and 2.2 canopy heights (hc), and the mean enhancement factors measured before and after leaf senescence were 1.10 plusmn; 0.06 and 1.24 ± 0.07, respectively. Larger discrepancies were measured closer to the canopy (1.2 to 1.4 hc), and mean enhancement factors of 1.60 ± 0.10 and 1.82 ± 0.11 were measured before and after leaf senescence, respectively. Overall, the Borden results suggest that similarity theory can be used within the roughness sublayer with a greater confidence than previously has been believed.

Similarity theory Roughness sublayer Forests Carbon dioxide Tunable diode laser Fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P.: 1988, Introduction to Micrometeorology, Academic Press, San Diego, 307 pp.Google Scholar
  2. Baldocchi, D. D.: 1991, 'Canopy Control of Trace Gas Emissions', in T. D. Sharkey, E. A. Holland, and H. A. Mooney (eds.), Trace Gas Emissions by Plants, Academic Press, San Diego, pp. 293-334.Google Scholar
  3. Baldocchi, D. D. and Meyers, T. P.: 1988, 'Turbulence Structure in a Deciduous Forest', Boundary-Layer Meteorol. 43, 345-364.Google Scholar
  4. Brunet, Y., Finnigan, J. J., and Raupach, M. R.: 1994, 'A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics', Boundary-Layer Meteorol. 70, 95-132.Google Scholar
  5. Carl, D. M., Tarbell, T. C., and Panofsky, H. A.: 1973, 'Profiles of Wind and Temperature from Towers over Homogeneous Terrain', J. Atmos. Sci. 30, 788-794.Google Scholar
  6. Cellier, P. and Brunet, Y.: 1992, 'Flux-Gradient Relationships above Tall Plant Canopies', Agric. For. Meteorol. 58, 93-117.Google Scholar
  7. Chen, F. and Schwerdtfeger, P.: 1989, 'Flux-Gradient Relationships for Momentum and Heat Over a Rough Natural Surface', Quart. J. Roy. Meteorol. Soc. 115, 335-352.Google Scholar
  8. Corrsin, S.: 1974, 'Limitations of Gradient Transport Models in Random Walks and Turbulence', in F. N. Frenkiel and R. E. Munn (eds.), Advances in Geophysics, Vol. 18A. Turbulent Diffusion in Environmental Pollution, Academic Press, New York, pp. 25-60.Google Scholar
  9. Denmead, O. T. and Bradley, E. F.: 1985, 'Flux-Gradient Relationships in a Forest Canopy', in B. A. Hutchison and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel, Dordrecht, pp. 421-442.Google Scholar
  10. Dlugokencky, E. J., Conway, T. J., Tans, P. P, Montzka, S. A., and Elkins, J.W.: 1995, 'Recent Trends in Greenhouse Gases', presented at the Sixth Symposium on Global Change Studies, January 15-20, Dallas, TX, pp. 202-204.Google Scholar
  11. Dyer, A. J.: 1974, 'A Review of Flux-Gradient Relationships', Boundary-Layer Meteorol. 7, 363-372.Google Scholar
  12. Edwards, G. C.: 1992, The Development and Evaluation of a Tunable Diode Laser Trace Gas Sensor for the Measurement of N 2 O and CH 4 Fluxes using Micrometeorological Techniques, Ph.D. Thesis, Land Resource Science, University of Guelph, Guelph, Ontario, Canada, 110 pp.Google Scholar
  13. Fuentes, J. D., Wang, D., Neumann, H. H., Gillespie, T. J., den Hartog, G., and Dann, T. F.: 1996, 'Ambient Biogenic Hydrocarbons and Isoprene Emissions from a Mixed Deciduous Forest', J. Atmos. Chem. 25, 67-95.Google Scholar
  14. Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observations of Organized Structure in Turbulent Flow Within and Above a Forest Canopy', Boundary-Layer Meteorol. 47, 349-377.Google Scholar
  15. Garratt, J. R.: 1978, 'Flux-Gradient Relationships Above Tall Vegetation', Quart. J. Roy. Meteorol. Soc. 104, 199-211.Google Scholar
  16. Garratt, J. R.: 1980, 'Surface Influence Upon Vertical Profiles in the Atmospheric Near-Surface Layer', Quart. J. Roy. Meteorol. Soc. 106, 803-819.Google Scholar
  17. Graham, J. L.: 1985, General Forest Description: Camp Borden Dry Deposition Project, Report prepared for the Atmospheric Environment Service, Downsview, Ontario, 53 pp.Google Scholar
  18. Hicks, B. B.: 1976, 'Wind Profile Relationships from the Wangara Experiment', Quart. J. Roy. Meteorol. Soc. 102, 535-551.Google Scholar
  19. Högström, U.: 1988, 'Nondimensional Wind and Temperature Profiles', Boundary-Layer Meteorol. 42, 55-78.Google Scholar
  20. Högström, U., Bergström, H., Smedman, A-S., Halldin, S., and Lindroth, A: 1989, 'Turbulent Exchange Above a Pine Forest, I: Fluxes and Gradients', Boundary-Layer Meteorol. 49, 197-217.Google Scholar
  21. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows, Oxford University Press, New York, 289 pp.Google Scholar
  22. Leclerc, M. Y.: 1987, Turbulence and Turbulent Diffusion Inside and Above Vegetation, Ph.D. Thesis, Land Resource Science, University of Guelph, Guelph, Ontario, Canada, 155 pp.Google Scholar
  23. Meyers, T. P. and Baldocchi, D. D.: 1993, 'Trace Gas Exchange Above the Floor of a Deciduous Forest, II. SO2 and O3 Deposition', J. Geophys. Res. 98, 12,631-12,638.Google Scholar
  24. Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.: 1996, 'Use of the Modified Bowen-Ratio Technique to Measure Fluxes of Trace Gases', Atmos. Environ. 30, 3321-3329.Google Scholar
  25. Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: 1997, 'A System to Measure Surface Fluxes of Momentum, Sensible Heat, Water Vapour and Carbon Dioxide', J. Hydrol. 188-189, 589-611.Google Scholar
  26. Monin, A. S. and Obukhov, A. M.: 1954, 'Basic Laws of Turbulent Mixing in the Atmospheric Surface Layer', Trans. Geophys. Inst. Akad. Nauk. USSR 24, 151, 163-187.Google Scholar
  27. Neumann, H. H., den Hartog, G., and Shaw, R. H..: 1989, 'Leaf Area Measurements Based on Hemispheric Photographs and Leaf-Litter Collection in a Deciduous Forest During Autumn Leaf-Fall', Agric. For. Meteorol. 45, 325-345.Google Scholar
  28. Oke, T. R.: 1986, Boundary Layer Climates, Methuen, London, 372 pp.Google Scholar
  29. Paulson, C. A.: 1970, 'The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer', J. Appl. Meteorol. 9, 857-861.Google Scholar
  30. Raupach, M. R.: 1979, 'Anomalies in Flux-Gradient Relationships Over Forest', Boundary-Layer Meteorol. 16, 467-486.Google Scholar
  31. Raupach, M. R.: 1988, 'Canopy Transport Processes', in W. L. Steffen and O. T. Denmead (eds.), Flow and Transport in the Natural Environment: Advances and Applications, Springer-Verlag, Berlin, pp. 1-33.Google Scholar
  32. Raupach, M. R.: 1989, 'A Practical Lagrangian Method for Relating Scalar Concentrations to Vegetation Canopies', Quart. J. Roy. Meteorol. Soc. 115, 609-632.Google Scholar
  33. Simpson, I. J., Edwards, G. C., Thurtell, G.W., den Hartog, G., and Neumann, H. H.: 1997, 'Micrometeorological Measurements of Methane and Nitrous Oxide Exchange Above a Boreal Aspen Stand', J. Geophys. Res., in press.Google Scholar
  34. Simpson, I. J., Thurtell, G. W., Kidd, G. E., Lin, M., Demetriades-Shah, T. H., Flitcroft, I. D., Kanemasu, E. T., Nie, D., Bronson, K. F., and Neue, H. U.: 1995, 'Tunable Diode Laser Measurements of Methane Fluxes from an Irrigated Rice Paddy Field in the Philippines', J. Geophys. Res. 100, 7283-7290.Google Scholar
  35. Staebler, R. M., Fuentes, J. D., Neumann, H. H., and Chen, J. M.: 1997, 'Light Interception by a Temperate Deciduous Forest', in Extended Abstracts, 9th Conference on Atmospheric Radiation, February 2-7, Long Beach, CA, pp. 459-461.Google Scholar
  36. Sutton, O. G.: 1953, Micrometeorology, McGraw-Hill, New York, 333 pp.Google Scholar
  37. Thom, A. S., Stewart, J. B., Oliver, H. R., and Gash, J. H. C.: 1975, 'Comparison of Aerodynamic and Energy Budget Estimates of Fluxes over a Pine Forest', Quart. J. Roy. Meteorol. Soc. 101, 93-105.Google Scholar
  38. Viswanadham, Y., Sá, L. D. de A., Silva, V. de P., and Manzi, A. O.: 1987, 'Ratios of Eddy Transfer Coefficients Over the Amazon Forest', in Forest Hydrology and Watershed Management, IAHS Publ. 167, IAHS Press, Wallingford, pp. 365-373.Google Scholar
  39. Wagner-Riddle, C., Thurtell, G.W., King, K. M., Kidd, G. E., and Beauchamp, E. G.: 1996, 'Nitrous Oxide and Carbon Dioxide Fluxes from a Bare Soil Using a Micrometeorological Approach', J. Environ. Qual. 25, 898-907.Google Scholar
  40. Webb, E. K.: 1970, 'Profile Relationships: The Log-Linear Range and Extension to Strong Stability', Quart. J. Roy. Meteorol. Soc. 96, 67-90.Google Scholar
  41. Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, 'Correction of Flux Measurements for Density Effects Due to Heat and Water Vapour Transfer', Quart. J. Roy. Meteorol. Soc. 106, 85-100.Google Scholar
  42. Woodruff, B. L.: 1986, Sampling Error in a Single-Instrument Vertical Gradient Measurement in the Atmospheric Surface Layer, M. S. thesis, Department of Atmospheric Science, Colorado State University, Colorado, U.S.A., 79 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • I. J. Simpson
    • 1
  • G. W. Thurtell
    • 2
  • H. H. Neumann
    • 3
  • G. Den Hartog
    • 3
  • G. C. Edwards
    • 4
  1. 1.Department of ChemistryUniversity of California –Irvine, IrvineU.S.A.
  2. 2.Land Resource ScienceUniversity of GuelphCanada
  3. 3.Atmospheric Environment ServiceDownsviewCanada
  4. 4.School of EngineeringUniversity of GuelphCanada

Personalised recommendations