Antonie van Leeuwenhoek

, Volume 73, Issue 1, pp 127–141 | Cite as

Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology

  • Gerard Muyzer
  • Kornelia Smalla


Here, the state of the art of the application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology will be presented. Furthermore, the potentials and limitations of these techniques will be discussed, and it will be indicated why their use in ecological studies has become so important.

DGGE genetic fingerprinting microbial ecology molecular microbial ecology PCR rRNA TGGE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akkermans DL, van Elsas JD & de Bruijn FJ (1995) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  2. Amann RI, Stromley J, Devereux R, Key R & Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58: 614-623Google Scholar
  3. Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situdetection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169Google Scholar
  4. Barns SM, Fundyga RE, Jeffries MW & Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609-1613Google Scholar
  5. Borneman J, Skroch PW, O'Sullivan KM, Palus JA, Rumjanek NG, Jansen JL, Nienhuis J & Triplett EW (1996) Molecular microbial diversity of an agricultural soil in Wisconsin. Appl. Environ. Microbiol. 62: 1935-1943Google Scholar
  6. Brinkhoff T & Muyzer G (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospiraspp. Appl. Environ. Microbiol. 63: 3789-3796Google Scholar
  7. Brunk CF, Avaniss-Aghajani E & Brunk CA (1996) A computer analysis of primer and probe hybridization potential with small-subunit rRNA sequences. Appl. Environ. Microbiol. 62: 872-879Google Scholar
  8. Buchholz-Cleven BEE, Rattunde B & Straub KL (1997) Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst. Appl. Microbiol. 20: 301-309Google Scholar
  9. Cariello NF, Keohavong P, Sanderson BJS & Thilly WG (1988) DNA damage produced by ethidium bromide staining and exposure to ultraviolet light. Nucleic Acids Res. 16: 4157Google Scholar
  10. Cairns MJ & Murray V (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17: 915-919Google Scholar
  11. Donner G, Schwarz K, Hoppe HG & Muyzer G (1996) Profiling the succession of bacterial populations in pelagic chemoclines. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48: 7-14Google Scholar
  12. Farrelly V, Rainey FA & Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801Google Scholar
  13. Ferris MJ, Muyzer G & Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346Google Scholar
  14. Ferris MJ, Nold SC, Revsbech NP & Ward NM (1997) Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl. Environ. Microbiol. 63: 1367-1374Google Scholar
  15. Ferris MJ & Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375-1381Google Scholar
  16. Felske A, Engelen B, Nübel U & Backhaus H (1996) Direct ribosomal isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167Google Scholar
  17. Felske A, Wolterink A, van Lis R & Akkermans ADL (1998) Screening for dominant bacterial 16S rRNA sequences in soil. Antonie van Leeuwenhoek, in pressGoogle Scholar
  18. Fisher CR (1990) Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev. Aquat. Sci. 2: 399-436Google Scholar
  19. Fischer SG & Lerman LS (1979) Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell 16: 191-200Google Scholar
  20. Fischer SG & Lerman LS (1983) DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 1579-1583Google Scholar
  21. Führ A (1996) Untersuchungen zu der Biodiversität natürlicher Bakterienpopulationen im Boden mit der denaturierenden Gradientengelelectrophorese (DGGE) von 16S rDNA-Sequenzen. PhD-thesis Universitat Kaiserslautern, Kaiserslautern, GermanyGoogle Scholar
  22. Fuhrman JA, McCallum K & Davis AA (1993) Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59: 1294-1302Google Scholar
  23. Garcia-Pichel F, Prufert-Bebout L & Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastesto be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 62: 3284-3291Google Scholar
  24. Giovannoni SJ, Britschgi TB, Moyer CL, & Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 344: 60-63Google Scholar
  25. Grey JP & Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl. Environ. Microbiol. 62: 4049-4059Google Scholar
  26. Heuer H, Hartung K, Engelen B & Smalla K (1995) Studies on microbial communities associated with potato plants by BIOLOG and TGGE patterns. Med. Fac. Landbouww. Univ. Gent 60/4b: 2639-2645Google Scholar
  27. Heuer H & Smalla K. (1997) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial communities. In: van Elsas JD, Trevors JT & Wellington EMH (Eds) Modern Soil Microbiology. Marcel Dekker, New York. pp. 353-373Google Scholar
  28. Heuer H, Krsek M, Baker P, Smalla K & Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233- 3241Google Scholar
  29. Höfle MG (1988) Identifcation of bacteria by low molecular weight RNA profiles: a new chemotaxonomic approach. J. Microbiol. Meth. 8: 235-248Google Scholar
  30. Höfle MG (1990) Transfer RNAs as genotypic fingerprints of eubacteria. Arch. Microbiol. 153: 299-304Google Scholar
  31. Holben WE, Calabrese VGM, Harris D, Ka JO & Tiedje JM (1993) Analysis of structure and selection in microbial communities by molecular methods. In: Guerrero R & Pedrós-Alió C (Eds) Trends in Microbial Ecology, pp. 367-370Google Scholar
  32. Holben WE & Harris D (1995) DNA-based monitoring of total bacterial community structure in environmental samples. Molecular Ecology 4: 627-631Google Scholar
  33. Hollibaugh JT (1994) Relationship between thymidine metabolism bacterioplankton community metabolic capabilities and sources of organic matter used for growth. Microb. Ecol. 28: 117-131Google Scholar
  34. Jaspers E & Overmann J (1997) Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities. Appl. Environ. Microbiol. 63: 3176-3181Google Scholar
  35. Jeffrey WH, Nazaret S & Barkay T (1996) Detection of the merAgene and its expression in the environment. Microb. Ecol. 32: 293-303Google Scholar
  36. Jensen MA & Straus N (1993) Effect of PCR conditions on the formation of heteroduplex and single-stranded DNA products in the amplification of bacterial ribosomal DNA spacer regions. PCR Methods Applic. 3: 186-194Google Scholar
  37. Karkhoff-Schweizer RR, Huber DPW, & Voordouw G (1995) Conservation of the genes for the dissimilatory sulfite reductase from Desulfovibrio vulgarisand Archaeoglobus fulgidusallows their detection by PCR. Appl. Envrion. Microbiol. 61: 290-296Google Scholar
  38. Keohavong P & Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc. Natl. Acid. Sci. USA 86: 9253-9257Google Scholar
  39. Komatsoulis GA & Waterman MS (1997) A new computational method for detection of chimeric 16S rRNA artifacts generated by PCR amplification from mixed bacterial populations. Appl. Environ. Microbiol. 63: 2338-2346Google Scholar
  40. Kopczynski ED, Bateson Mm & Ward DM (1994) Recognition of chimeric small-subunit ribosomal DNAs composed from genes from uncultivated microorganisms. Appl. Environ. Microbiol. 60: 746-748Google Scholar
  41. Kowalchuk GA, Stephen JR, de Boer W, Prosser JI, Embley TM & Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the β-subdivision of the class Proteobacteriain coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497Google Scholar
  42. Lee D-H, Zo Y-G & Kim S-J (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-Single-Strand-Conformation Polymorphism. Appl. Environ. Microbiol. 62: 3112-3120Google Scholar
  43. Lerman LS & Silverstein K (1987) Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymology 155: 482-501Google Scholar
  44. Liesack W, Weyland H & Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb. Ecol. 21: 191-198Google Scholar
  45. Liesack W & Stackebrandt E (1992) Occurence of novel groups of the domain Bacteriaas revealed by analysis of genetic material isolated from an Austalian terrestrial environment. J. Bacteriol. 174: 5072-5078Google Scholar
  46. Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL & Stackebrandt E (1997) Microbial diversity in soil: The need for a combined approach using molecular and cultivation techniques. In: van Elsas JD, Trevors JT & Wellington EMH (Eds) Modern Soil Microbiology. Marcel Dekker, New York. pp. 375-439Google Scholar
  47. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ & Woese CR (1997) The RDP (Ribosomal Database Project). Nucleic Acids Res. 25: 109-110Google Scholar
  48. Martínez-Murcia AJ, Acinas SG & Rodriguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiology Ecology 17: 247-256Google Scholar
  49. Massol-Deya AA, Odelson DA, Hickey RF & Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal gene sequences and restriction endonuclease analysis (ARDRA). In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.3.2: pp. 1-8) Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  50. McCaig AE, Embley TM & Prosser JI (1994) Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiology Letters 120: 363-368Google Scholar
  51. Moyer CL, Dobbs FC & Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60: 871-879Google Scholar
  52. Moyer CL, Dobbs FC & Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555-1562Google Scholar
  53. Moyer CL, Tiedje JM, Dobbs FC & Karl DM (1996) A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: Efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62: 2501-2507Google Scholar
  54. Murray AE, Hollibaugh JT & Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments. Appl. Environ. Microbiol. 62: 2676-2680Google Scholar
  55. Muyzer G, de Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700Google Scholar
  56. Muyzer G & deWaal EC (1994) Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rRNA. NATO ASI Series G35: 207-214Google Scholar
  57. Muyzer G, Teske A, Wirsen CO & Jannasch HW (1995) Phylogenetic relationships of Thiomicrospiraspecies and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164: 165-171Google Scholar
  58. Muyzer G & Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Wat. Sci. Tech. 32: 1-9Google Scholar
  59. Muyzer G, Hottenträger S, Teske A & Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA - A new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.4.4: pp. 1-23) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  60. Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H & Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds) Molecular Microbial Ecology Manual (3.4.4: pp. 1-27) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  61. Myers RM, Fischer SG, Lerman LS & Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131-3145Google Scholar
  62. Myers RM, Maniatis T & Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155: 501-527Google Scholar
  63. Myers RM, Sheffield VC & Cox DR (1989) Mutation detection by PCR, GC-clamps, and denaturing gradient gel electrophoresis. In: Erlich HA (Ed) PCR-Technology- Principles and Applications for DNA amplification (pp. 71-88) Stockton Press, New YorkGoogle Scholar
  64. Neefs J, van de Peer Y, Hendriks L & de Wachter R (1990) Compilation of small ribosomal subunit RNA sequences. Nucleic Acid Res. 18: 2237-2242Google Scholar
  65. Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W & Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxadetected by temperature gradient gel electrophoresis. J Bacteriol. 178: 5636-5643Google Scholar
  66. Nübel U, Garcia-Pichel F & Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332Google Scholar
  67. Olsen GJ, Lane DJ, Giovannoni SJ & Pace NR (1986) Microbial ecology and evolution: a ribosomal approach. Ann. Rev. Microbiol. 40: 337-365Google Scholar
  68. Orita M, Iwahana H, Kanazawa H, Hayashi K & Sekiya T (1989) Detection of polymorphisms of human DNAby gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86: 2766-2770Google Scholar
  69. Øvreas L, Castberg T & Torsvik V (1995) Analysis of natural microbial communities using reassociation of total DNA in combination with bisbenzimide density gradients and DGGE. In: Smalla K & Muyzer G, (Eds) Proceedings of the workshop on Application of DGGE and TGGE in Microbial EcologyGoogle Scholar
  70. Pace NA, Stahl DA, Lane DJ & Olsen G (1986) The analysis of natural microbial populations by ribosomal RNAsequences. Adv. Microb. Ecol. 9: 1-55Google Scholar
  71. Paul JH (1996) Carbon cycling: molecular regulation of photosynthetic carbon fixation. Microb. Ecol. 32: 231-245Google Scholar
  72. Priemé A, Sitaula JIB, Klemedtsson AK & Bakken LR (1996) Extraction of methane-oxidizing bacteria from soil particles. FEMS Microbiol. Ecol. 21: 59-68Google Scholar
  73. Rainey FA, Ward N, Sly LI, & Stackebrandt E (1994) Dependence on the taxon composition of clone libraries for PCR amplified, naturally ocurring 16S rDNA, on the primer pair and the cloning system. Experientia 50: 796-797Google Scholar
  74. Raskin L, Zheng D, Griffin ME, Stroot PG & Misra P (1995) Characterization of microbial communities in anaerobic bioreactors using molecular probes. Antonie van Leeuwenhoek 68: 297-308Google Scholar
  75. Reysenbach A-L, Giver LJ, Wickham GS, & Pace NR (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58: 3417-3418Google Scholar
  76. Riesner D, Henco K & Steger G (1991) Temperature-gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins. In: Advances in Electrophoresis 4: 169-250Google Scholar
  77. Robison-Cox JF, Bateson MM & Ward DM (1995) Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl. Environ. Microbiol. 61: 1240-1245Google Scholar
  78. Rochelle PA, Cragg BA, Fry JC, Parkes RJ & Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecology 15: 215-226Google Scholar
  79. Rölleke S, Muyzer G, Wawer C, Wanner G & Lubitz W (1996) Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA fragments. Appl. Environ. Microbiol. 62: 2059-2065Google Scholar
  80. Rosenbaum V & Riesner D (1987) Temperature-gradient gel electrophoresis; thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys. Chem. 26: 235-246Google Scholar
  81. Rosset R, Julien J & Monier R (1966) Ribonucleic acid composition of bacteria as a function of growth rate. J. Mol. Biol. 18: 308-320Google Scholar
  82. Saiki RK, Gelfand DH, Stoffel SJ, Scharf SJ, Higuchi R, Horn GT, Mullis KB & Erlich HA (1988) Primer-directed enzymatic amplifcation of DNA with thermostable DNA polymerase. Science 239: 487-491Google Scholar
  83. Santegoeds CM, Nold SC & Ward DM (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria froma hot spring cyanobacterial mat. Appl. Environ. Microbiol. 62: 3922-3928Google Scholar
  84. Santegoeds CM, Muyzer G & de Beer D (1997) Successional processes in a bacterial biofilm determined with microsensors and molecular techniques. In: Proceeding International Symposium Environmental Biotechnology '97, pp. 77-82Google Scholar
  85. Schäfer H (1997) Sukzessive Veränderungen der Diversität mariner, mikrobieller Populationen, bestimmt durch 16S rDNA Klonbibliotheken und denaturierende Gradienten Gelelektrophorese (DGGE). Diplomthesis, Universität Bremen, Bremen, GermanyGoogle Scholar
  86. Scheinert P, Krausse R, Ullmann U, Söller R & Krupp G (1996) Molecular differentiation of bacteria by PCR amplification of the 16S-23S rRNA spacer. J. Microbiol. Meth. 26: 103-117Google Scholar
  87. Sen WH & Hohn B (1992) DMSO improves PCR amplification of DNA with complex secondary structure. Trends in Genetics 8: 227Google Scholar
  88. Sheffield VC, Cox DR & Myers RM (1989) Attachment of a 40-bp G+C rich sequence (GC-clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86: 232-236Google Scholar
  89. Sheffield VC, Beck JS, Stone EM & Myers RM (1992) A simple and efficient method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. BioTechniques 12: 386-387Google Scholar
  90. Silva MC & Batt CA (1995) Effect of cellular physiology on PCR amplification efficiency. Molecular Ecology 4: 11-16Google Scholar
  91. Sinigalliano CD, Kuhn DN & Jones RD (1995) Amplification of the amoAgene from diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater. Appl. Environ. Microbiol. 61: 2702-2706Google Scholar
  92. Smith E, Leeflang P & Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology 23: 249-261Google Scholar
  93. Smith KT, Long CM, Bowman B & Manos MM (1990) Using cosolvents to enhance PCR amplification. Amplifications 5: 16-17Google Scholar
  94. Stahl DA, Flesher B, Mansfield HR & Montgomery L (1988) Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084Google Scholar
  95. Suzuki MT & Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625-630Google Scholar
  96. Teske A, Wawer C, Muyzer G & Ramsing NB (1996a) Distribution of sulfate-reducing bacteria in a stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62: 1405-1415Google Scholar
  97. Teske A, Sigalevich P, Cohen Y & Muyzer G (1996b) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl. Environ. Microbiol. 62: 4210-4215Google Scholar
  98. Teske A (1995) Phylogenetische und Ökologische Untersuchungen an Bakterien des oxidativen und reduktiven marinen Schwefelkreislaufs mittels ribosomaler RNA. PhD-thesis. University Bremen, Bremen, GermanyGoogle Scholar
  99. Torsvik V, Goksoyr J & Daale FL (1990a) High diversity in DNA of soil bacteria. Appl. Envrion. Microbiol. 56: 782-787Google Scholar
  100. Torsvik V, Salte K, Sorkeim R & Goksoyr J (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56: 776-781Google Scholar
  101. Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G & Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology Ecology 24: 279-285Google Scholar
  102. Varadaraj K & Skinner DM (1994) Denaturants or cosolvents improve the specificity of PCR amplification of a G+C-rich DNA using genetically engineered DNA polymerases. Gene 140: 1-5Google Scholar
  103. Voytek MA & Ward BB (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteriain aquatic samples with the PCR. Appl. Environ. Microbiol. 61: 1444-1450Google Scholar
  104. Ward DM, Weller R & Bateson Mm (1990) 16S rRNA sequences reveal numerous uncultivated microorganisms in a natural environment. Nature 345: 63-65Google Scholar
  105. Ward DM, Bateson MM, Weller R & Ruff-Roberts (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12: 219-286Google Scholar
  106. Ward DM, Santegoeds CM, Nold SC, Ramsing NB, Ferris MJ & Bateson MM (1996) Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures. Antonie van Leeuwenhoek 71: 143-150Google Scholar
  107. Wawer C & Muyzer G (1995) Genetic diversity of Desulfovibriospp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61: 2203-2210Google Scholar
  108. Wawer C, Rüggeberg H, Meyer G & Muyzer G (1995) A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. Nucleic Acids Res. 23: 4928-4929Google Scholar
  109. Wawer C (1996) Molekularbiologische Charakterisierung von sulfatreduzierenden Bakterien in Umweltproben unter den Aspekten Diversität und Aktivität. PhD-thesis, University Bremen, Bremen, GermanyGoogle Scholar
  110. Wawer C, Jetten M.S.M. & Muyzer G (1997) Genetic diversity and expression of the [NiFe] hydrogenase large subunit gene of Desulfovibriospp. in environmental samples. Appl. Environ. Microbiol. 63: 4360-4369Google Scholar
  111. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP & Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464Google Scholar
  112. Weller R, Weller JW & Ward DM (1991) 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Environ. Microbiol. 57: 1146-1151Google Scholar
  113. Wheeler Alm E & Stahl DA (1996) Extraction of microbial DNA from aquatic sediments. In: Akkermans ADL, van Elsas JD & de Bruijn FJ (Eds.) Molecular Microbial Ecology Manual (1.1.5: pp.1-29) Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  114. Wichels A (1996) Untersuchungen zur Diversität mariner Bakteriophagen und zu ihrer Verbreitung in der Nordsee. PhD-thesis, University Hamburg, Hamburg, GermanyGoogle Scholar
  115. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA & Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res. 18: 6531-6535.Google Scholar
  116. Xia X, Bollinger J & Ogram A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Molecular Ecology 4: 17-28Google Scholar
  117. Zwart G, Huismans R, van Agterveld M, van de Peer Y, de Rijk P, Eenhoorn H, Muyzer G, van Hannen E, Gons H & Laanbroek R (1997) Divergent members of the bacterial division Verrucomicrobialesin a temperate freshwater lake. FEMS Microbiology Ecology, in press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Gerard Muyzer
    • 1
  • Kornelia Smalla
    • 2
  1. 1.Max-Planck-Institute for Marine MicrobiologyBremenGermany
  2. 2.Biologische Bundesanstalt für Land- und ForstwirtschaftBraunschweigGermany

Personalised recommendations