Antonie van Leeuwenhoek

, Volume 73, Issue 2, pp 169–187 | Cite as

Viability and activity in readily culturable bacteria: a review and discussion of the practical issues

  • Douglas B. Kell
  • Arseny S. Kaprelyants
  • Dieter H. Weichart
  • Colin R. Harwood
  • Michael R. Barer

Abstract

In microbiology the terms ‘viability’ and ‘culturability’ are often equated. However, in recent years the apparently self-contradictory expression ‘viable-but-nonculturable’ (‘VBNC’) has been applied to cells with various and often poorly defined physiological attributes but which, nonetheless, could not be cultured by methods normally appropriate to the organism concerned. These attributes include apparent cell integrity, the possession of some form of measurable cellular activity and the apparent capacity to regain culturability. We review the evidence relating to putative VBNC cells and stress our view that most of the reports claiming a return to culturability have failed to exclude the regrowth of a limited number of cells which had never lost culturability. We argue that failure to differentiate clearly between use of the terms ‘viability’ and ‘culturability’ in an operational versus a conceptual sense is fuelling the current debate, and conclude with a number of proposals that are designed to help clarify the major issues involved. In particular, we suggest an alternative operational terminology that replaces ‘VBNC’ with expressions that are internally consistent.

viability culturability anabiosis cryptobiosis dormancy metabolic activity thanatology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizenman E, Engelberg-Kulka H & Glaser G (1996) An Escherichia coli chromsomal & #x2018;addiction module & #x2019; regulated by 3 & #x2019;,5 & #x2019;-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93: 6059–6063Google Scholar
  2. Allen-Austin D, Austin B & Colwell RR (1984) Survival of Aeromonas salmonicida in river water. FEMS Microbiol. Lett. 21: 143–146Google Scholar
  3. Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169Google Scholar
  4. Barcina I, Arana I, Santorum P, Iriberri J & Egea L (1995) Direct viable count of gram-positive and gram-negative bacteria using ciprofloxacin as inhibitor of cellular division. J. Microbiol. Meth. 22: 139–150Google Scholar
  5. Barcina I, Gonzalez JM, Iriberri J & Egea L (1990) Survival strategy of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J. Appl. Bacteriol. 68: 189–198Google Scholar
  6. Barer MR, Gribbon LT, Harwood CR & Nwoguh CE (1993) The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4: 183–191Google Scholar
  7. Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P & JIP (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 63: 2281–2286Google Scholar
  8. Beumer RR, Devries J & Rombouts FM (1992) Campylobacter jejuni nonculturable coccoid cells. Int. J. Food Microbiol. 15: 153–163Google Scholar
  9. Binnerup SJ, Hojberg O & Gerlif D (1995) Resuscitation demonstrated in a mixed batch of culturable and non-culturable Pseudomonas aeruginosa PA0303. In 7th International Symposium on Microbial Ecology, pp. P1–5.3. SanPaulo, BrazilGoogle Scholar
  10. Binnerup SJ, Jensen DF, Thordal-Christensen H & Sorgensen J (1993) Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12: 97–105Google Scholar
  11. Biosca EG, Amaro C, Marconoales E & Oliver JD (1996) Effect of low temperature on starvation survival of the eel pathogen Vibrio vulnificus biotype-2. Appl. Environ. Microbiol. 62: 450–455Google Scholar
  12. Bissonnette GK, Jezeski JJ, McFeters GA & Stuart DG (1975) Influence of environmental stress on enumeration of indicator bacteria from natural waters. Appl. Microbiol. 29: 186–194Google Scholar
  13. Bovill RA & Mackey BM (1997) Resuscitation of & #x2018;non-culturable & #x2019; cells from aged cultures of Campylobacter jejuni. Microbiology UK 143, 1575–1581Google Scholar
  14. Brayton PR, Tamplin ML, Huq A & Colwell RR (1987) Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. Environ. Microbiol. 53: 2862–2865Google Scholar
  15. Bridges BA (1996) Elevated mutation rate in mutT bacteria during starvation - evidence for DNA turnover. J. Bacteriol. 178: 2709–2711Google Scholar
  16. Button DK, Schut F, Quang P, Martin R & Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture - theory, procedures, and initial results. Appl. Environ. Microbiol. 59: 881–891Google Scholar
  17. Button DK, Schut F, Quang P, Martin R & Robertson BR (1993) Viability and isolation of marine-bacteria by dilution culture - theory, procedures, and initial results. Appl. Environ. Microbiol. 59: 881–891Google Scholar
  18. Cairns J, Overbaugh J & Miller S (1988) The origin of mutants. Nature 335: 142–145Google Scholar
  19. Calcott PH & Postgate JR (1972) On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70: 115–122Google Scholar
  20. Chmielewski RAN & Frank JF (1995) Formation of viable but non-culturable Salmonella during starvation in chemically-defined solutions. Lett. Appl. Microbiol. 20: 380–384Google Scholar
  21. Colwell RR, Brayton BR, Grimes DJ, Roszak DB, Huq SA & Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technol. 3: 817–820Google Scholar
  22. Colwell RR, Brayton P, Herrington D, Tall B, Huq A & Levine MM (1996) Viable but nonculturable Vibrio cholerae-O1 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 12: 28–31Google Scholar
  23. Dance D (1991) Melioidosis - the tip of the iceberg. Clin. Microbiol. Rev. 4: 52–60Google Scholar
  24. Davey HM & Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single cell analysis. Microbiol. Rev. 60: 641–696Google Scholar
  25. Dawe LL & Penrose WR (1978) & #x2018;Bactericidal & #x2019; property of seawater: death or debiliation? Appl. Environ. Microbiol. 35: 829–833Google Scholar
  26. De Wit D, Wootton M, Dhillon J & Mitchison DA (1995) The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis. Tubercle Lung Dis. 76: 555–562Google Scholar
  27. DeMaio J, Zhang Y, Ko C, Young DB & Bishai WR (1996) A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93: 2790–2794Google Scholar
  28. Diaper JP & Edwards C (1994) The use of fluorogenic esters to detect viable bacteria by flow-cytometry. J. Appl. Bacteriol. 77: 221–228Google Scholar
  29. Dow CS, Whittenbury R & Carr NG (1983) The & #x2018;shutdown & #x2019; or & #x2018;growth precursor & #x2019; cell - an adaptation for survival in a potentially hostile environment. In Microbes in their natural environment (Symp. Soc. Gen. Microbiol.), pp. 187–247. Edited by JH Slater, R Whittenbury & JWT Wimpenny. Cambridge: Cambridge University PressGoogle Scholar
  30. Duncan S, Glover LA, Killham K & Prosser JI (1994) Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl. Environ. Microbiol. 60: 1308–1316Google Scholar
  31. Evdokimova NV, Dorofeev AG & Panikov NS (1994) Dynamics of survival and transition to dormant state of nitrogen-starving bacteria Pseudomonas fluorescens. Microbiol. (Russia) 63: 99–104Google Scholar
  32. Ferguson Y, Glover LA, McGillivray DM & Prosser JI (1995) Survival and activity oflux-Marked Aeromonas salmonicida in seawater. Appl. Environ. Microbiol. 61: 3494–3498Google Scholar
  33. Franch T & Gerdes K (1996) Programmed cell death in bacteria: translational repression by mRNA end-pairing. Mol. Microbiol. 21: 1049–1060Google Scholar
  34. Fry JC (1990) Direct methods and biomass estimation. Methods Microbiol. 22: 41–85Google Scholar
  35. Gangadharam PRJ (1995) Mycobacterial dormancy. Tubercle Lung Dis. 76: 477–479Google Scholar
  36. Gribbon LT & Barer MR (1995) Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl. Environ. Microbiol. 61: 3379–3384Google Scholar
  37. Hall BG (1995) Genetics of selection-induced mutations.1. uvrA, uvrB, uvrC, and uvrD are selection-induced specific mutator loci. J. Mol. Evoln. 40: 86–93Google Scholar
  38. Harris CM & Kell DB (1985) The estimation of microbial biomass. Biosensors 1: 17–84Google Scholar
  39. Hattori T (1988). The viable count: quantitative and environmental aspects. Berlin: SpringerVerlagGoogle Scholar
  40. Haugland RP (1992). Molecular Probes: Handbook of fluorescent probes and research chemicals, 5 edn. Eugene, OR USA.: Molecular Probes IncGoogle Scholar
  41. Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase regulation in E. coli. Cell 72: 165–168Google Scholar
  42. Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. Methods Microbiol. 22: 1–39Google Scholar
  43. Hobson NS, Tothill I & Turner APF (1996) Microbial Detection. Biosensors and Bioelectronics 11: 455–477Google Scholar
  44. Husevag B (1995) Starvation survival of the fish pathogen Aeromonas salmonicida in seawater. FEMS Microbiol. Ecol. 16: 25–32Google Scholar
  45. Hussong D, Colwell RR, Obrien M, Weiss E, Pearson AD, Weiner RM & Burge WD (1987) Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technol. 5: 947–950Google Scholar
  46. Jarvis B & Easter MC (1987) Rapid methods in the assessment of microbiological quality; experiences and needs. Journal of Applied Bacteriology Symposium Supplement, 115S–126SGoogle Scholar
  47. Jazwinski SM (1993) The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91: 35–51Google Scholar
  48. Jensen RB & Gerdes K (1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17: 205–210Google Scholar
  49. Jepras RI, Carter J, Pearson SC, Paul FE & Wilkinson MJ (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl. Environ. Microbiol. 61: 2696–2701Google Scholar
  50. Jernaes MW & Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17: 302–309Google Scholar
  51. Jiang XP & Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62: 1300–1305Google Scholar
  52. Joliffe LK, Doyle RJ & Streips UN (1981) The energised membrane and cellular autolysis of Bacillus subtilis. Cell 25: 753–763Google Scholar
  53. Jones DM, Sutcliffe EM & Curry A (1991) Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137: 2477–2482Google Scholar
  54. Kaprelyants AS, Gottschal JC & Kell DB (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 104: 271–286Google Scholar
  55. Kaprelyants AS & Kell DB (1992) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72: 410–422Google Scholar
  56. Kaprelyants AS & Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl. Environ. Microbiol. 59: 3187–3196Google Scholar
  57. Kaprelyants AS & Kell DB (1996) Do bacteria need to communicate with each other for growth? Trends Microbiol. 4: 237–242Google Scholar
  58. Kaprelyants AS, Mukamolova GV, Davey HM & Kell DB (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl. Environ. Microbiol. 62: 1311–1316Google Scholar
  59. Kaprelyants AS, Mukamolova GV & Kell DB (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol. Lett. 115: 347–352Google Scholar
  60. Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Ser. B 150: 149–191Google Scholar
  61. Kell DB (1988) Protonmotive energy-transducing systems: some physical principles and experimental approaches. In Bacterial Energy Transduction, pp. 429–490. Edited by CJ Anthony. London: Academic PressGoogle Scholar
  62. Kell DB, Kaprelyants AS & Grafen A (1995) On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evol. 10: 126–129Google Scholar
  63. Kell DB, Markx GH, Davey CL & Todd RW (1990) Real-time monitoring of cellular biomass - methods and applications. Trends Anal. Chem. 9: 190–194Google Scholar
  64. Kell DB, Ryder HM, Kaprelyants AS & Westerhoff HV (1991) Quantifying heterogeneity - flow cytometry of bacterial cultures. Antonie Van Leeuwenhoek 60: 145–158Google Scholar
  65. Kell DB & Sonnleitner B (1995) GMP - Good Modelling Practice: an essential component of good manufacturing practice. Trends Biotechnol. 13: 481–492Google Scholar
  66. Koch AL (1994) Growth measurement. In Methods for General and MolecularBacteriology, pp. 248–277. Edited by P Gerhardt, RGE Murray, WA Wood & NR Krieg. Washington, D. C.: American Society for MicrobiologyGoogle Scholar
  67. Kogure K, Simidu U & Taga N (1979) A tentative direct microscopic method of counting living bacteria. Can. J. Microbiol. 25: 415–420Google Scholar
  68. Kolter R, Siegele DA & Tormo A (1993) The stationary phase of the bacterial life cycle. Ann. Rev. Microbiol. 47: 855–874Google Scholar
  69. Lappin-Scott HM, Cusack F, Macleod A & Costerton JW (1988) Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J. Appl. Bacteriol. 64: 541–549Google Scholar
  70. Lewis K (1994) Multidrug resistance pumps in bacteria: varations on a theme. Trends Biochem. Sci. 19: 119–123Google Scholar
  71. Lloyd D (1993). Flow cytometry inmicrobiology. London: SpringerVerlagGoogle Scholar
  72. MacDonell M & Hood M (1982) Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl. Environ. Microbiol. 43: 566–571Google Scholar
  73. Magarinos B, Romalde J, Barja J & Toranzo AE (1994) Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl. Environ. Microbiol. 60: 180–186Google Scholar
  74. Manafi M, Kneifel W & Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 55: 335–348Google Scholar
  75. Matin A (1994) Starvation promoters of Escherichia coli - their function, regulation, and use in bioprocessing and bioremediation. Ann. N. Y. Acad. Sci. 721: 277–291Google Scholar
  76. McCune RM, Feldmann FM, Lambert HP & McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123: 445–468Google Scholar
  77. McFeters GA & Singh A (1991) Effects of aquatic environmental stress on enteric bacterial pathogens. J. Appl. Bacteriol. 70: S115–S120Google Scholar
  78. McFeters GA, Yu FPP, Pyle BH & Stewart PS (1995) Physiological assessment of bacteria using fluorochromes. J. Microbiol. Meth. 21: 1–13Google Scholar
  79. McInerney MJ, Bryant MP, Hespell RB & Costerton JW (1981) Syntrophomonas wolfei Gen. Nov. Sp. Nov., an anaerobic, syntrophic, fatty acid oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029–1039Google Scholar
  80. Meyer RD (1983) Legionella infections - a review of 5 years of research. Rev. Inf. Dis. 5: 258–278Google Scholar
  81. Meynell GG & Meynell E (1970) Theory and practice in experimental bacteriology., pp 347. Cambridge: Cambridge University PressGoogle Scholar
  82. Moir A, Kemp EH, Robinson C & Corfe BM (1994) The genetic-analysis of bacterial spore germination. J. Appl. Bacteriol. 76: S 9–S 16Google Scholar
  83. Mor N, Resnick M, Silbaq F, Bercovier H & Levy L (1988) Reduction of tellurite and deesterification of fluorescein diacetate are not well correlated with the viability of mycobacteria. Ann. Inst. Pasteur 139: 279–288Google Scholar
  84. Morgan J, Cranwell P & Pickup R (1991) Survival of Aeromonas salmonicida in lake water. Appl. Environ. Microbiol. 57: 1777–1782Google Scholar
  85. Morgan JAW, Clarke KJ, Rhodes G & Pickup RW (1992) Nonculturable Aeromonas salmonicida in lake water. Microbial Releases 1: 71–78Google Scholar
  86. Mukamolova GV, Kaprelyants AS & Kell DB (1995) Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie Van Leeuwenhoek 67: 289–295Google Scholar
  87. Nilsson L, Oliver JD & Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J. Bacteriol. 173: 5054–5059Google Scholar
  88. Nwoguh CE, Harwood CR & Barer MR (1995) Detection of induced b-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol. Microbiol. 17: 545–554Google Scholar
  89. Oliver JD (1993) Formation of viable but nonculturable cells. In Starvation in bacteria, pp. 239–272. Edited by S. Kjelleberg. New York: PlenumGoogle Scholar
  90. Oliver JD & Bockian R (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61: 2620–2623Google Scholar
  91. Oliver JD, Hite F, McDougald D, Andon NL & Simpson LM (1995) Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl. Environ. Microbiol. 61: 2624–2630Google Scholar
  92. & #x00D6;stling J, Holmquist L, Fl & #x00E4;rdh K, Svenblad B, Jouper-Jaan & #x00C8; & Kjelleberg S (1993) Starvation and recovery of marine Vibrio. In Starvation in bacteria, pp. 103–127 Edited by S. Kjelleberg. New York: Plenum Press.Google Scholar
  93. Pearson AD, Greenwood M, Healing TD, Rollins D, Shahamat M, Donaldson J & Colwell RR (1993) Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl. Environ. Microbiol. 59: 987–996Google Scholar
  94. Poindexter JS (1981) Oligotrophy: fast and famine existence. Adv. Microbial Ecol. 5: 63–89Google Scholar
  95. Postgate J (1967) Viability measurements and the survival of microbes under minimum stress. In Advances in Microbial Physiology, pp. 1–21 Edited by AH Rose & J Wilkinson. London: Academic PressGoogle Scholar
  96. Postgate JR (1969) Viable counts and viability. Meth. Microbiol. 1: 611–628Google Scholar
  97. Postgate JR (1976) Death in microbes and macrobes. In The Survival Of Vegetative Microbes, pp. 1–19. Edited by TRG Gray & JR Postgate. Cambridge: Cambridge University Press.Google Scholar
  98. Postgate JR & Hunter JR (1963) Acceleration of bacterial death by growth substrates. Nature 198: 273–280Google Scholar
  99. Postgate JR & Hunter JR (1964) Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J. Gen. Microbiol. 34: 459–473Google Scholar
  100. Primas H (1981) Chemistry, Quantum Mechanics and Reductionism. Berlin: SpringerGoogle Scholar
  101. Rahman I, Shahamat M, Chowdhury MAR & Colwell RR (1996) Potential virulence of viable but nonculturable Shigella dysenteriae Type-1. Appl. Environ. Microbiol. 62: 115–120Google Scholar
  102. Ravel J, Knight IT, Monahan CE, Hill RT & Colwell RR (1995) Temperature-Induced recovery of Vibrio cholerae from the viable but nonculturable state - growth or resuscitation. Microbiology UK 141: 377–383Google Scholar
  103. Ray B & Speck ML (1972) Repair of injury induced by freezing E. coli as influenced by the recovery medium? Appl. Microbiol. 24: 258–263Google Scholar
  104. Ray B & Speck ML (1973) Freeze-injury in bacteria. CRC Crit. Rev. Clin. Lab. Sci. 4: 161–213Google Scholar
  105. Relman DA, Schmidt TM, Macdermott RP & Falkow S (1992) Identification of the uncultured bacillus of Whipple & #x2019;s disease. N. Eng. J. Med. 327: 293–301Google Scholar
  106. Rodriguez GG, Phipps D, Ishiguro K & Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58: 1801–1808Google Scholar
  107. Rollins DM & Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52: 531–538Google Scholar
  108. Romalde JL, Barja JL, Magarinos B & Toranzo AE (1994) Starvation survival processes of the bacterial fish pathogen Yersinia ruckeri. Syst. Appl. Microbiol. 17: 161–168Google Scholar
  109. Rose AS, Ellis AE & Munro ALS (1990) Evidence against dormancy in the bacterial fish pathogen Aeromonas salmonicida subsp salmonicida. FEMS Microbiol. Lett. 68: 105–107Google Scholar
  110. Roszak D & Colwell RR (1985) Viable but non-culturable bacteria in the aquatic environment. J. Appl. Bacteriol. 59: R 9–R 9Google Scholar
  111. Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379Google Scholar
  112. Roszak DB, Grimes DJ & Colwell RR (1984) Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30: 334–338.Google Scholar
  113. Russek E & Colwell RR (1983) Computation of Most Probable Numbers. Appl. Environ. Microbiol. 45: 1646–1650Google Scholar
  114. Schr & #x00F6;dinger E (1935) Die genenw & #x00E4;rtige Situation in der Quantenmechanik. Naturwissenschaften 23: 807–849Google Scholar
  115. Schut F, Devries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA & Button DK (1993) Isolation of typical marine bacteria by dilution culture - growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59: 2150–2160Google Scholar
  116. Shapiro HM (1995) Practical Flow Cytometry, 3rd edition, 3rd edn. New York: John WileyGoogle Scholar
  117. Sonnleitner B, Locher G & Fiechter A (1992) Biomass determination. J. Biotechnol. 25: 5–22Google Scholar
  118. Stevenson L (1978) A case for bacterial dormancy in aquatic systems. Microbial Ecol. 4: 127–133Google Scholar
  119. Sussman S & Halvorson H (1966). Spores, their dormancy and germination. New York: Harper and RowGoogle Scholar
  120. Torsvik V, Sorheim R & Goksoyr J (1996) Total bacterial diversity in soil and sediment communities - A review. J. Indust. Microbiol. 17: 170–178Google Scholar
  121. von Nebe-Caron G & Badley RA (1995) Viability assessment of bacteria in mixed populations using flow cytometry. J. Microsc. - Oxford 179: 55–66Google Scholar
  122. Votyakova TV, Kaprelyants AS & Kell DB (1994) Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase - the population effect. Appl. Environ. Microbiol. 60: 3284–3291Google Scholar
  123. Wai SN, Moriya T, Kondo K, Misumi H & Amako K (1996) Resuscitation of Vibrio cholerae O1 strain tsi4 from a viable but nonculturable state by heat shock. FEMS Microbiol. Lett. 136: 187–191Google Scholar
  124. Watson L (1987) The Biology of Death (previously published as The Romeo Error). London: Sceptre BooksGoogle Scholar
  125. Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Inf. Dis. 13: 908–914Google Scholar
  126. Weichart D & Kjelleberg S (1996) Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology UK 142: 845–853Google Scholar
  127. Weichart D, Oliver JD & Kjelleberg S (1992) Low-temperature induced nonculturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100: 205–210Google Scholar
  128. Whitesides MD & Oliver JD (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl. Environ. Microbiol. 63: 1002–1005Google Scholar
  129. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ & Colwell RR (1982) Survival and Viability Of Nonculturable Escherichia Coli and Vibrio Cholerae in the estuarine and marine environment. Microbial Ecol. 8: 313–323Google Scholar
  130. Yamamoto H, Hashimoto Y & Ezaki T (1996) Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation. FEMS Microbiol. Ecol. 20: 149–154Google Scholar
  131. Young DB & Duncan K (1995) Prospects for new interventions in the treatment and prevention of mycobacterial disease. Ann. Rev. Microbiol. 49: 641–673Google Scholar
  132. Zambrano MM, Siegele DA, Almiron M, Tormo A & Kolter R (1993) Microbial competition - Escherichia coli mutants that take over stationary phase cultures. Science 259: 1757–1760Google Scholar
  133. Zimmermann R, Iturriaga R & Becker-Birck J (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36: 926–935Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Douglas B. Kell
    • 1
  • Arseny S. Kaprelyants
    • 1
    • 2
  • Dieter H. Weichart
    • 1
  • Colin R. Harwood
    • 3
  • Michael R. Barer
    • 3
  1. 1.Edward Llwyd Building, Institute of Biological SciencesUniversity of WalesAberystwythU.K
  2. 2.Russian Academy of SciencesBach Institute of BiochemistryMOSCOWRussia
  3. 3.Department of Microbiologythe Medical School, Framlington PlaceNewcastle upon Tyne

Personalised recommendations