Antonie van Leeuwenhoek

, Volume 73, Issue 1, pp 117–126

Origin and evolution of plasmids

  • Clarence I. Kado


Studies on the origin and evolution of plasmids may provide valuable insights on the promiscuous nature of DNA. The first examples of the selfish nature of nucleic acids are exemplified by primordial oligoribonucleotides which evolved into primitive replicons. The propagation of these molecules were likely patterned after the current viral RNA ribozymes, which have been recently shown to possess RNA synthesizing and template mediated polymerizing capabilities in the absence of proteins. The parasitic nature of nucleic acids is depicted by satellite nucleic acid molecules associated with viruses. The satellites of adenovirus and tobacco ringspot virus serve as established examples: they contain no open reading frames. Comparative analysis of the replication origins of virions and plasmids show them to be conserved, originating from the simplest autocatalytic replicon to highly complex and evolved plasmids, replicating by a rolling circle mechanism. The eventual association of proteins with nucleic acids provided added efficiency and protective advantages for molecular perpetuation. The promiscuous and selfish nature of plasmids is demonstrated by their ability to genetically engineer their host so that the host cell is best able to cope and survive in hostile environments. Survival of the host ensures survival of the plasmid. Sequestering of genes by plasmids occurs when the environmental conditions negatively affect the host. The sequestering mechanism is fundamental and forms the outreach mechanisms to generate and propagate macromolecules of increasing size when necessary for survival. The level of sophistication of plasmids increases with the addition of new genes such as those that allow the host to occupy a specific environment normally inhospitable to the host cell. The vast range of plasmid types which have obtained genes interchangeably reflect the levels of sophistication achieved by these macromolecules. The Ti plasmid in Agrobacterium tumefaciens and the pSym and accessory plasmids in Rhizobium illustrate the level of complexity attained by replicons.

riboplasmids encapsidation pseudovirions selfish plasmids replicons ribozyme Agrobacterium Rhizobium grapevines L-tartrate lignin methoxyphenols satellite viruses opines crown gall T-DNA origin of replication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brom S, García de los Santos A, Stepkowsky T, Flores MD, Dávila G, Romero D & Palacios R (1992) Different plasmids of Rhizobium leguminosarumbv. phaseoli are required for optimal symbiotic performance. J. Bacteriol. 174: 5183–5189Google Scholar
  2. Bruening G (1990) Replication of satellite RNA of tobacco ringspot virus. Seminars in Virology 1: 127-134Google Scholar
  3. Bundock P & Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciensTDNA in the Saccharomyces cerevisiaegenome by illegitimate recombination. Proc. Natl. Acad. Sci. USA 93: 15272-15275Google Scholar
  4. Bundock P, den Dulk-Ras A, Beijersbergen A & Hooykaas, PJJ (1995) Trans-kingdom TDNA transfer from Agrobacterium tumefaciensto Saccharomyces cerevisiae. EMBO J. 14: 3206- 3214Google Scholar
  5. Casjens S, Delange M, Ley III HL, Rosa P & Huang WM (1995) Linear chromosomes of lyme disease agent spriochetes: genetic diversity and conservation of gene order. J. Bacteriol. 177: 2769- 2780Google Scholar
  6. Chesnokova O, Coutinho JB, Khan IH, Mikhail MS & Kado CI (1997) Characterization of flagella genes of Agrobacterium tumefaciensand the effect of a bald strain on virulence. Mol. Microbiol. 23: 579-590Google Scholar
  7. Cho, K, Fuqua C, Martin BS & Winans SC (1996) Identification of Agrobacterium tumefaciensgenes that direct the complete catabolism of octopine. J. Bacteriol. 178: 1872-1880Google Scholar
  8. Coplin DL, Rowan RG Chisholm DA & Whitmoyer RE (1981) Characterization of plasmids in Erwinia stewartii. Appl. Environ. Microbiol. 42: 599-604Google Scholar
  9. Datta N(1975) Epidemiology and classification of plasmids. In: Schlessinger D (Ed) Microbiology-1974 (pp 9-15) American Society for Microbiology, Washington, DCGoogle Scholar
  10. Dessaux Y, Petit A & Tempé J (1992) Opines in Agrobacteriumbiology. In: Verma DPS (Ed) Molecular Signals in Plant-Microbe Communications (pp 109-136) CRC Press, Boc Raton, FloridaGoogle Scholar
  11. Dimitriadis GJ (1978) Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes. Nature 274: 923-924Google Scholar
  12. Doty SL, Yu MC, Lundin JI, Heath JD & Nester EW (1996) Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J. Bacteriol. 178: 961-970Google Scholar
  13. Ekland EH & Bartel DP (1996) RNA-catalyzed RNA polymerization using nucleoside triphosphates. Nature 382: 373-376Google Scholar
  14. Ellis JG & Murphy PJ (1981) Four new opines from crown gall tumours-their detection and properties. Mol. Gen. Genet. 181: 36-43Google Scholar
  15. Farrand SK (1993) Conjugal transfer of Agrobacteriumplasmids. In: Clewell DB (Ed) Bacterial Conjugation (pp. 255-291) Plenum Press, New YorkGoogle Scholar
  16. Fukuhara H (1995) Linear DNA plasmids of yeasts. FEMS Microbiol. Letters 131: 1-9Google Scholar
  17. Fullner KJ, Lara JC & Nester EW (1996) Pilus assembly by AgrobacteriumT-DNA transfer genes. Science 273: 1107-1109Google Scholar
  18. Fuqua WC, Winans SC & Greenburg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176: 269-275Google Scholar
  19. Gallie DR, Zaitlin D, Perry KL & Kado CI (1984) Characterization of the replication and stability regions of Agrobacterium tumefaciensplasmid pTAR. J. Bacteriol. 157: 739-745Google Scholar
  20. Grosschedl R & Hobom G (1979) DNA sequences and structural homologies of the replication origins of lambdoid bacteriophages. Nature 277: 621-627Google Scholar
  21. Hayakawa T, Tanaka T, Sakaguchi K, Otake N & Yonehara H (1979) A linear plasmid-like DNA in Streptomycessp. producing lankacidin group antibiotics. J. Gen. Appl. Microbiol. 25: 255-260Google Scholar
  22. Hooykaas PJJ & Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopathol. 32: 157- 179Google Scholar
  23. Hwang I, Li P-L, Zhang L, Piper KR, Cook DM, Tate M & Farrand SK (1994) TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acyl homoserine lactone autoinducer. Proc. Natl. Acad. Sci. USA 91: 4639-4643Google Scholar
  24. Jacob F, Brenner S & Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp. Quant. Biol. 28: 329-348Google Scholar
  25. Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit Rev Plant Sci 10: 1-32Google Scholar
  26. Kado CI (1993) Agrobacteriummediated transfer and stable incorporation of foreign genes in plants. In: Clewell DB (Ed) Bacterial Conjugation (pp. 243-254). Plenum Press, New YorkGoogle Scholar
  27. Kado CI (1994) TDNA transfer to plants is mediated by piluslike apparatus encoded by the Ti plasmid virBoperon. Adv. Plant Biotechnol. 4: 23-36Google Scholar
  28. Kado CI (1994a) Promiscuous DNA transfer system of Agrobacterium tumefaciens:role of the virBoperon in sex pilus assembly and synthesis. Mol. Microbiol. 12: 17-22Google Scholar
  29. Kado CI & Lurquin PF (1978) Reconstitution of plasmid DNA with tobacco mosaic virus protein for introducing plasmids into higher plant cells. Microbiology 1978: 231-234Google Scholar
  30. Kelly B & Kado CI (1997) Promiscous gene transfer of Agrobacterium tumefaciensextends to the actinomycete Streptomyces lividans. Amer. Soc. Microbiol. Gen. Mtg. Abstr. p 47Google Scholar
  31. Kinashi H, Shimaji M & Sakai A (1987) Giant linear plasmids in Streptomyceswhich code for antibiotic biosynthesis genes. Nature 328: 454-456Google Scholar
  32. Lin, LS, Kim YJ & Meyer RJ (1987) The 20 bp, directly repeated DNA sequence of broad host range plasmid R1162 exerts incompatibility in vivo and inhibits R1162 DNA replication in vitro. Mol. Gen. Genet. 208: 390-397Google Scholar
  33. Lurquin PF (1979) Entrapment of plasmid DNA by liposomes. Nucleic Acids Res. 6: 3773-3784Google Scholar
  34. Mayor HD, Torikai K, Melnick JL & Mandel M (1969) Plus and minus single-stranded DNA separately encapsidated in adeno-associated satellite virions. Science 166: 1280-1282Google Scholar
  35. Michel, MR, Hirt B & Weil R (1967) Mouse cellular DNA enclosed in polyoma viral capsids (pseudovirions). Proc. Natl. Acad. Sci. USA 58: 1381-1388Google Scholar
  36. Miyashita S, Hirochika H, Ikeda JE & Hashiba T (1990) Linear plasmid DNAs of the plant pathogenic fungus Rhizoctonia solaniwith unique terminal structures. Mol. Gen. Genet. 220: 165-171Google Scholar
  37. Murotsu T, Matsubara K, Sugisaki H & Takanami M (1981) Nine unique repeating sequences in a region essential for replication and incompatibility of the mini-F plasmid. Gene 15: 257-271Google Scholar
  38. Netolitzky DJ, Wu X, Jensen SE & Roy KL (1995) Giant linear plasmids of α-lactam antibiotic producing Streptomyces. FEMS Microbiol. Lett. 131: 27-34Google Scholar
  39. Novick RP (1969) Extrachromosomal inheritance in bacteria. Bact. Rev. 33: 210-235Google Scholar
  40. Okumura MS & Kado CI (1992) The region essential for efficient autonomous replication of pSa in Escherichia coli.Mol. Gen. Genet. 235: 55-63Google Scholar
  41. Otten L, Crouzet P, Salomone JY, de Ruffray P & Szegedi E (1995) Agrobacterium vitisstrain AB3 harbors two independent tartrate utilization systems, one of which is encoded by the Ti plasmid. Mol Plant-Microbe Interact. 8: 138-146Google Scholar
  42. Petit A, Delhaye S, Tempé J & Morel G (1970) Recherches sur les guanidines des tissus de crowngall. Mise en évidence d'une relation biochimique spécifique entre les souches d'Agrobacterium tumefacienset les tumeurs qu'elles induisent. Physiol. Vég. 8: 205-213Google Scholar
  43. Richmond MH (1970) Plasmids and chromosomes in prokaryotic cells. In: Charles HP, Knight CJG (Eds) Organization and Control in Prokaryotic and Eukaryotic Cells (pp 249-277) Cambridge University Press, LondonGoogle Scholar
  44. Rogowsky PM, Powell BS, Shirasu K, Lin TS, Morel P, Zyprian EM, Steck TR & Kado CI (1990) Molecular characterization of the virregulon of Agrobacterium tumefaciens: complete nucleotide sequence and gene organization of the 28.63-kbp regulon cloned as a single unit. Plasmid 23: 85-106Google Scholar
  45. Salmond GPC, Bycroft BW, Stewart GSAB & Williams P (1995) The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol. Microbiol. 16: 615-624Google Scholar
  46. Scherer G (1978) Nucleotide sequence of the O gene and of the origin of replication in bacteriophage λ DNA. Nucleic Acids Res. 5: 3141-3156Google Scholar
  47. Schneider IR & White RM (1976) Tobacco ringspot virus codes for the coat protein of its satellite. Virology 70: 244-246Google Scholar
  48. Shirasu K & Kado CI (1993) Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett. 111: 287-294Google Scholar
  49. del Solar G, Moscoso & Espinosa M (1993) Rolling circle-replicating plasmids from Gram-positive and Gram-negative bacteria: a wall falls. Mol. Microbiol. 8: 789-796Google Scholar
  50. Stalker DM, Kolter R & Helinski DR (1982) Plasmid R6K DNA replication, I. Complete nucleotide sequence of an autonomously replicating segment. J. Mol. Biol. 161: 33-43Google Scholar
  51. Stalker DM, Thomas CM & Helinski DR (1981) Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Mol. Gen. Genet. 181: 8-12Google Scholar
  52. Sugiyama T (1966) Tobacco mosaic viruslike rods formed by ‘mixed reconstitution’ between MS2 ribonucleic acid and tobacco mosaic virus protein. Virology 28: 488-492Google Scholar
  53. Szegedi E, Otten L & Czako M (1992) Diverse types of tartrate plasmids in Agrobacterium tumefaciensbiotype III strains. Mol. Plant-Microbe Interact. 5: 435-438Google Scholar
  54. Taghavi S, Provoost A, Mergeay M & van der Lelie D (1996) Identification of a partition and replication region in the Alcaligenes eutrophusmegaplasmid pMOL28. Mol. Gen. Genet. 250: 169-179Google Scholar
  55. Tol HV, Buzayan JM & Bruening G (1991) Evidence for spontaneous circle formation in the replication of the satellite RNA of tobacco ringspot virus. Virology 180: 23-30Google Scholar
  56. Tolun A & Helinski DR (1982) Separation of the minimal replication region of the F plasmid into a replication origin segment and a transacting segment. Mol. Gen. Genet. 186: 372-377Google Scholar
  57. Ts'o, POP (1968) The physicochemical basis of interactions of nucleic acids. In: Pullman B (Ed) Molecular Associations in Biology (pp. 39-75). Academic Press, New YorkGoogle Scholar
  58. Vary P (1994) Prime time for Bacillus megaterium. Microbiol. 140: 1001-1013Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Clarence I. Kado
    • 1
  1. 1.Davis Crown Gall GroupUniversity of CaliforniaDavisUSA

Personalised recommendations