Boundary-Layer Meteorology

, Volume 84, Issue 2, pp 247–266

AN E – ε – ℓ TURBULENCE CLOSURE SCHEME FOR PLANETARY BOUNDARY-LAYER MODELS: THE NEUTRALLY STRATIFIED CASE

  • DAPENG XU
  • PETER A. TAYLOR
Article

Abstract

The standard E – ε model generates aplanetary boundary layerthat appears to be much too deep. The cause of theproblem is traced to the equation for the dissipationrate (ε) of turbulent kinetic energy (E), specifically theparameterization of dissipation production anddestruction. In the context of atmosphericboundary-layer modelling, we argue that a part of thedissipation production should be modelled as the inputto the spectral cascade from the energy-containingpart of the spectrum, with a characteristic lengthℓ ε, while the ‘equilibrium’ imbalancebetween local production and destruction ofdissipation is modelled as proportional toE2/E, as in the standard model. Wepropose an E – ε – ℓ turbulence closurescheme, in which both the mixing length, ℓ m, andℓ ε are prescribed. The importance ofthe ε equation is diminished, though itstill determines the dissipation rate in the Eequation.

Neutrally-stratified Ekman layer Turbulence closure E – ε model Turbulence length scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andren, A.: 1991, 'A TKE-Dissipation Model for the Atmospheric Boundary-Layer', Boundary-Layer Meteorol. 25, 207–221.Google Scholar
  2. Andren, A. and Moeng, C.H.: 1993, 'Single Point Closures in a Neutrally Stratified Boundary Layer', J. Atmos. Sci. 50, 3366–3379.Google Scholar
  3. Apsley, D. D. and Castro, I. P.: 1997, 'A Limited-Length Scale K–ε" Model for the Neutral and Stably-Stratified Atmospheric Boundary Layer', Boundary-Layer Meteorol. 83, 75–98.Google Scholar
  4. Blackadar, A. K.: 1962, 'The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere', J. Geophys. Res. 67, 3095–3102.Google Scholar
  5. Champagne, H. H., Harris, V. G., and Corrsin, S.: 1970, 'Experiments on Nearly Homogeneous Shear Flow', J. Fluid Mech. 41, 81–141.Google Scholar
  6. Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1990, 'A Numerical Study of the Turbulent Ekman Layer',J. Fluid Mech. 213, 313–348.Google Scholar
  7. Detering, H.W. and Etling, D.: 1985, 'Application of the E − ε" Turbulence Model to the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 33, 113–133.Google Scholar
  8. Duynkerke, P. G.: 1988, 'Application of the E–ε " Turbulence Closure Model to Neutral and Stable Atmospheric Boundary-Layers', J. Atmos. Sci. 45, 865–880.Google Scholar
  9. Estoque, M.A.: 1973, 'Numerical Modelling of the PlanetaryBoundary Layer',Workshop on Microm-eteorology, American Meteorol. Soc., pp. 217–270.Google Scholar
  10. Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  11. Hanjalic, K. and Launder, B. E.: 1972, 'A Reynolds Stress Model of Turbulence and its Application to Thin Shear Flows', J. Fluid Mech. 52, 609–638.Google Scholar
  12. Holt, T. and R aman, S.: 1988, 'A Review and Comparative Evaluation of Multilevel Boundary Layer Parameterizations for First Order and Turbulent Kinetic Energy Closures Schemes',Rev. Geophys. 12, 761–780.Google Scholar
  13. Kaimal, J. C. and Finnigen, J. J., 1994, Atmospheric Boundary Layer Flows, Their Structure and Measurement, Oxford University Press, Oxford, 289 pp.Google Scholar
  14. Launder, B. E.: 1990, 'Phenomenological Modelling: Present...and Future?', in Whither Turbu-lence? Turbulence at the Cross Road, Proceedings of Workshop Held at Cornell University, Ithaca, NY, March 22-24, 1989, Springer-Verlag, Berlin-New York, pp. 439–486.Google Scholar
  15. Launder, B. E. and Spalding, D. B.: 1974, 'The Numerical Computation of Turbulent Flows', Comp. Meth. Appl. Mech. Engineer. 3, 269–289.Google Scholar
  16. Launder, B. E,. Reece, G. J., and Rodi,W.: 1975, 'Progress in the Development of a Reynolds-Stress Turbulence Closure', J. Fluid Mech. 68, 537–566.Google Scholar
  17. Lettau, H.: 1962, 'Theoretical Wind Spirals in the Boundary Layer of a Barotropic Atmosphere', Beitr. Phys. Atmosph. 35, 195–212.Google Scholar
  18. Lumley, J. L. and Khajeh-Nouri, B.: 1974, 'Computational Modelling of Turbulent Transport', Adv. Geophys. 18A, 169–192.Google Scholar
  19. Mason, P. J. and Thomson, D. J.: 1987, 'Large Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer', Quart. J. Roy. Meteorol. Soc. 113, 413–443.Google Scholar
  20. Mellor, G. L. and Yamada, T.: 1982, 'Development of a Turbulence Closure Model for Geophysics Fluid Problems', Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  21. Mildner, P.: 1932, '¨ Uber die Reibung in einer speziellen Luftmasse in den untersten Schichten der Atmosphäre', Beitr. Phys. Atmosph. 19, 151–158.Google Scholar
  22. Mohammadi, B. and Pironneau, O.: 1994, Analysis of theK-epsilon Turbulence Model, Wiley/Masson, New York, 194pp.Google Scholar
  23. Monin, A. S. and Zilitinkevich, S. S.: 1974, 'Similarity Theory and Resistance Laws for a Planetary Boundary Layer', Boundary-Layer Meteorol. 7, 391–397.Google Scholar
  24. Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, Models and Methods for Engi-neering Applications, John Wiley & Son, New York, 397 pp.Google Scholar
  25. Taylor, G. I.: 1915, 'Eddy Motion in the Atmosphere', Phil. Trans. Roy. Soc. A. 215, 1–26.Google Scholar
  26. Taylor, P. A.: 1969, 'On Planetary Boundary-Layer Flow under Conditions of Neutral Thermal Stability', J. Atmos. Sci. 26, 427–431.Google Scholar
  27. Taylor, P. A.: 1977, 'Numerical Studies of Neutrally Stratified Planetary Boundary-Layer Flow above Gentle Topography', Boundary-Layer Meteorol. 12, 37–60.Google Scholar
  28. Walmsley, J. L.: 1992, 'Proposal for New PBL Resistance Laws for Neutrally Stratified Flow', Boundary-Layer Meteorol. 60, 271–306.Google Scholar
  29. Wilcox, D. C.: 1993, Turbulence Modelling for CFD, DCW Industries, Inc. La Cañada, CA, 84 pp.Google Scholar
  30. Wyngaard, J. C., Coté, O. R. and Rao, K. S.: 1974, 'Modelling the Atmospheric Boundary-Layer, Adv. Geophys. 18A, 193–211.Google Scholar
  31. Zilitinkevivh, S. S. and Deardorff, J. W.: 1974, 'Similarity Theory for the Planetary Boundary Layer of Time Dependent Height', J. Atmos. Sci. 31, 1449–1452.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • DAPENG XU
    • 1
  • PETER A. TAYLOR
    • 1
  1. 1.Department of Earth and Atmospheric ScienceYork UniversityNorth YorkCanada

Personalised recommendations