Advertisement

Boundary-Layer Meteorology

, Volume 83, Issue 1, pp 1–26 | Cite as

THE EJECTION-SWEEP CHARACTER OF SCALAR FLUXES IN THE UNSTABLE SURFACE LAYER

  • GABRIEL KATUL
  • GREG KUHN
  • JOHN SCHIELDGE
  • CHENG-I HSIEH
Article

Abstract

In the atmospheric surface layer, it is widely accepted that ejection andsweep eddy motions, typically associated with coherent structures, areresponsible for much of the land-surface evaporation, sensible heat, andmomentum fluxes. The present study analyzes the ejection-sweep propertiesusing velocity and scalar fluctuation measurements over tall natural grassand bare soil surfaces. It is shown that momentum ejections and sweeps occurat equal frequencies (D eject ≈ D sweep ≈ 0.29) irrespective of surfaceroughness length or atmospheric stability conditions. Also, their magnitudesare comparable to values reported from open channel velocity measurements (Dsweep ≈ 0.33; D eject ≈: 0.30). The scalar D eject is constant andsimilar in magnitude to the momentum D eject( ≈ 0.29) over both surfacesand for a wide range of atmospheric stability conditions, in contrast to thescalar D sweep. The scalar sweep frequency is shown to depend on the scalarskewness for the dynamic convective and free convective sublayers, but isidentical to D eject for the dynamic sublayer. The threshold scalar skewnessat which the D sweep dependence occurs is 0.25, in agreement with theaccepted temperature skewness value at near-neutral conditions. In contrastto a previous surface-layer experiment, this investigation demonstrates thatthe third-order cumulant expansion method (CEM) reproduces the measuredrelative flux contribution of ejections and sweeps (ΔS0) for momentumand scalars at both sites. Furthermore, a linkage between ΔS0 and thescalar variance budget is derived via the third-order CEM in analogy tomomentum. It is shown that ΔS0 can be related to the flux divergenceterm and that such a relationship can be estimated from surface-layersimilarity theory, and the three sublayer model of Kader and Yaglom andproposed similarity functions.

Keywords

Sweep Frequency Atmospheric Surface Layer Scalar Flux Eddy Motion Flux Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, J. D., Parlange, M. B., Katul, G. G., Chu, C. R., Stricker, H., and Tyler, S.: 1995, 'Sensible Heat Flux from Arid Regions: A Simple Flux-Variance Method', Water Resour. Res 31, 969–973.Google Scholar
  2. Antonia, R. A. and Atkinson, J. D.: 1973, 'High-Order Moments of Reynolds Shear Stress Fluctuations in a Turbulent Boundary Layer', J. Fluid Mech. 58, 581–593.Google Scholar
  3. Antonia, R. A.: 1981, 'Conditional Sampling in Turbulence Measurements', Ann. Rev. Fluid Mech. 13, 131–156.Google Scholar
  4. Batchelor, G. K.: 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, 210 pp.Google Scholar
  5. Bergstrom, H. and Hogstrom, U.: 1989, 'Turbulent Exchange Above a Pine Forest II: Organized Structures', Boundary-Layer Meteorol. 49, 231–263.Google Scholar
  6. Bogard, D. G. and Tiederman, W. G.: 1987, 'Characteristics of Ejections in Turbulent Channel Flow', J. Fluid Mech. 179, 1–19.Google Scholar
  7. Brodkey, R. S., Wallace, J. M., and Eckelmann, H.: 1974, 'Some Properties of Truncated Signals in Bounded Shear Flows', J. Fluid Mech. 63, 209–224.Google Scholar
  8. Brutsaert, W.: 1982, Evaporation into the Atmosphere: Theory, History, and Applications,Kluwer Academic Press, 299 pp.Google Scholar
  9. Cantwell, B.: 1981, 'Organized Motion in Turbulent Flow', Ann. Rev. Fluid Mech. 13, 457–515.Google Scholar
  10. Chen, F.: 1990, 'Turbulent Characteristics over a Rough Natural Surface Part I: Turbulent Structures', Boundary-Layer Meteorol. 52, 151–175.Google Scholar
  11. Chu, C. R., Parlange, M. B., Katul, G. G., and Albertson, J. D.: 1996, 'Probability Density Functions of Heat and Momentum Fluxes in the Atmospheric Surface Layer', Water Resour. Res. 32, 1681–1688.Google Scholar
  12. Coppin, P. A., Raupach, M. R., and Legg, B. J.: 1986, 'Experiments on Scalar Dispersion within a Model Plant Canopy Part II: An Elevated Plane Source', Boundary-Layer Meteorol. 35, 167–191.Google Scholar
  13. de Bruin, H.A. R., Kohsiek, W., and Van den Hurk, B. J. J.M.: 1993, 'A Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapor, Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities', Boundary-Layer Meteorol. 63, 231–257.Google Scholar
  14. de Bruin, H.A.R., Bink, N. I., and Kroon, L. J. M.: 1991, 'Fluxes in the Surface Layer under Advective Conditions', in T. J. Schmugge and J. C. Andre (eds.), Workshop on Land Surface Evaporation Measurements and Parameterization,Springer-Verlag, New York, pp. 157–169.Google Scholar
  15. Finnigan, J. J.: 1985, 'Turbulent Transport in Flexible Plant Canopies', in B. A. Hutchinson and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Company, pp. 443–480.Google Scholar
  16. Frenkiel, F. and Klebanoff, P.: 1967, 'Higher Order Correlations in a Turbulent Field', Phys. Fluids 10, 507–520.Google Scholar
  17. Frenkiel, F. and Klebanoff, P.: 1973, 'Probability Distributions and Correlations in a Turbulent Boundary Layer', Phys. Fluids 16, 725–737.Google Scholar
  18. Garratt, J. R.: 1978, 'Flux Profile Relations above Tall Vegetation', Quart. J. Roy. Meteorol. Soc. 104, 199–211.Google Scholar
  19. Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.Google Scholar
  20. Hsieh, C. I., Katul, G. G., Scheildge, J., Sigmon, J. T., and Knoerr, K. R.: 1996, 'Estimation of Momentum and Heat Fluxes Using Dissipation and Flux-Variance Methods in the Unstable Surface Layer', Water Resour. Res. 32, 2453–2462.Google Scholar
  21. Kader, B. A. and Yaglom, A. M.: 1990, 'Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layers', J. Fluid Mech. 212, 637–662.Google Scholar
  22. Kaimal, J. C. and Finnigan, J. J.: 1994, Atmospheric Boundary Layer Flows: Their Structure and Measurements, Oxford University Press, 289 pp.Google Scholar
  23. Katul, G. G. and Parlange, M. B.: 1992, 'A Penman-Brutsaert Model for Wet Surface Evaporation', Water Resour. Res. 28, 121–126.Google Scholar
  24. Katul, G. G.: 1994, 'A Model for Sensible Heat Flux Probability Density Function for Near-Neutral and Slightly-Stable Atmospheric Flows', Boundary-Layer Meteorol. 71, 1–20.Google Scholar
  25. Katul, G. G., Albertson, J. D., Parlange, M. B., Chu, C. R., and Stricker, H.: 1994a, 'Conditional Sampling, Bursting, and the Intermittent Structure of Sensible Heat Flux', J. Geophys. Res. 99, 22869–22876.Google Scholar
  26. Katul, G. G. and Parlange, M. B.: 1994, 'On the Active Role of Temperature in Surface Layer Turbulence', J. Atmos. Sci. 51, 2181–2195.Google Scholar
  27. Katul G. G., Parlange, M. B., and Chu, C. R.: 1994b, 'Intermittency, Local Isotropy, and Non-Gaussian Statistics in Atmospheric Surface Layer Turbulence', Phys. Fluids 6, 2480–2492.Google Scholar
  28. Katul, G. G., Goltz, S. M., Hsieh, C. I., Cheng, Y., Mowry, F., and Sigmon, J.: 1995, 'Estimation of Surface Heat and Momentum Fluxes Using the Flux-Variance Method Above Uniform and Non-uniform Terrain', Boundary-Layer Meteorol. 74, 237–260.Google Scholar
  29. Katul, G. G., Albertson, J. D., Hsieh, C. I., Conklin, P. S., Sigmon, J. T., Parlange, M. B., and Knoerr, K. R.: 1996, 'The Inactive Eddy-Motion and the Large Scale Turbulent Pressure Fluctuations in the Dynamic Sublayer', J. Atmos. Sci. 53, 2512–2524.Google Scholar
  30. Kovasznay, L. S. G., Kibens, V., and Blackwelder, R. F.: 1970, 'Large-Scale Motion in the Intermittent Region of a Turbulent Boundary Layer', J. Fluid Mech. 41(2), 283–325.Google Scholar
  31. Krogstad, P. A., Antonia, R. A., and Browne, L. W. B.: 1992, 'Comparison between Rough-and Smooth-Wall Turbulent Boundary Layers', J. Fluid Mech. 245, 599–617.Google Scholar
  32. Lloyd, C. R., Culf, A. D., Dolman, A. J., and Gash, J. H.: 1991, 'Estimates of Sensible Heat Flux from Observations of Temperature Fluctuations', Boundary-Layer Meteorol. 25, 25–41.Google Scholar
  33. Maitani, T. and Ohtaki, E.: 1987, 'Turbulent Transport Processes of Momentum and Sensible Heat in the Surface Layer over a Paddy Field', Boundary-Layer Meteorol. 40, 283–293.Google Scholar
  34. Maitani, T. and Shaw, R. H.: 1990, 'Joint Probability Analysis of Momentum and Heat Fluxes at a Deciduous Forest', Boundary-Layer Meteorol. 52, 283–300.Google Scholar
  35. Monin, A. S. and Obukhov, A. M.: 1954, 'Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere', Tr. Geofiz Inst. Akad. Nauk. S.S.S.R. 151, 163–187.Google Scholar
  36. Monin, A. S. and Yaglom, A. M.: 1971, in J. Lumley (ed.), Statistical Fluid Mechanics,Vol. 1, MIT Press, 769 pp.Google Scholar
  37. Nagano, Y. and Tagawa, M.: 1988, 'Statistical Characteristics of Wall Turbulence with a Passive Scalar', J. Fluid Mech. 196, 157–185.Google Scholar
  38. Nagano, Y. and Tagawa, M.: 1990, 'A Structural Turbulence Model for Triple Products of Velocity and Scalar', J. Fluid Mech. 215, 639–657.Google Scholar
  39. Nagano, Y. and Tagawa, M.: 1995, 'Coherent Motions and Heat Transfer in a Wall Turbulent Shear Flow', J. Fluid Mech. 305, 127–157.Google Scholar
  40. Nakagawa, H. and Nezu, I.: 1977, 'Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open-Channel Flows', J. Fluid Mech. 80, 99–128.Google Scholar
  41. Padro, J.: 1993, 'An Investigation of Flux-Variance Methods and Universal Functions Applied to Three Land-Use Types in Unstable Conditions', Boundary-Layer Meteorol. 2, 25–37.Google Scholar
  42. Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence: Models and Methods for Engineering Applications, John Wiley and Sons, 397 pp.Google Scholar
  43. Perry, A. E., Schofield, W. H., and Joubert, P. N.: 1969, 'Rough-Wall Turbulent Boundary Layers', J. Fluid Mech. 37, 383–413.Google Scholar
  44. Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, 'Rough-Wall Turbulent Boundary Layers', Appl. Mech. Rev. 44, 1–25.Google Scholar
  45. Raupach, M. R.: 1981, 'Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers', J. Fluid Mech. 108, 363–382.Google Scholar
  46. Raupach, M. R. and Thom, A. S.: 1981, 'Turbulence in and Above Canopies', Ann. Rev. Fluid Mech. 13, 97–129.Google Scholar
  47. Robinson, S. K.: 1991, 'Coherent Motions in the Turbulent Boundary Layer', Ann. Rev. Fluid Mech. 23, 601–639.Google Scholar
  48. Shaw, R. H., Tavangar, J., and Ward, D.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922–1931.Google Scholar
  49. Shaw, R. H.: 1985, 'On Diffusive and Dispersive Fluxes in Forest Canopies', in B. A. Hutchinson and B. B. Hicks (eds.), The Forest-Atmosphere Interaction, D. Reidel Publishing Company, pp. 407–419.Google Scholar
  50. Sorbjan, Z.: 1989, Structure of The Atmospheric Boundary Layer, Prentice Hall, 317 pp.Google Scholar
  51. Subramanian, C. S., Rajagoplan, S., Antonia, R. A., and Chambers, A. J.: 1982, 'Comparison of Conditional Sampling and Averaging Techniques in a Turbulent Boundary Layer', J. Fluid Mech. 123, 335–362.Google Scholar
  52. Thoroddsen, S. T. and Van Atta, C. W.: 1992, 'Exponential Tails and Skewness of Density-Gradient Probability Functions in Stably Stratified Turbulence', J. Fluid Mech. 244, 547–566.Google Scholar
  53. Tillman, J. E.: 1972, 'The Indirect Determination of Stability, Heat, and Momentum Fluxes in the Atmospheric Boundary Layer from Simple Scalar Variables during Dry Unstable Conditions', J. Appl. Meteorol. 11, 783–792.Google Scholar
  54. Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, 428 pp.Google Scholar
  55. Weaver, H. L.: 1990, 'Temperature and Humidity Flux-Variance Relations Determined by One-Dimensional Eddy Correlations', Boundary-Layer Meteorol. 53, 77–91.Google Scholar
  56. Wesely, M. L.: 1988, 'Use of Variance Techniques to Measure Dry Air-Surface Exchange Rates', Boundary-Layer Meteorol. 44, 13–31.Google Scholar
  57. Willmarth, W.W. and Lu, S. S.: 1974, 'Structure of the Reynolds Stress and the Occurrence of Bursts in the Turbulent Boundary Layer', Adv. Geophys. 18A, 287–314.Google Scholar
  58. Wyngaard, J. C. and Sundarajan, A.: 1977, 'The Temperature Skewness Budget in the Lower Atmosphere and its Implications for Turbulence Modeling, in F. Durst, B. E. Launder, F. W. Schmidt, and J. H. Whitelaw (eds.), Turbulent Shear Flows, Vol. I, Springer-Verlag, pp. 319–326.Google Scholar
  59. Yaglom, A. M.: 1993, 'Similarity Laws for Wall Turbulent Flows: Their Limitations and Generalizations', in New Approaches and Concepts in Turbulence,Monte Verita, Birkhauser Verlag Basel, pp. 7–27.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • GABRIEL KATUL
    • 1
    • 2
  • GREG KUHN
    • 1
  • JOHN SCHIELDGE
    • 3
  • CHENG-I HSIEH
    • 1
  1. 1.School of the EnvironmentDuke UniversityDurhamU.S.A
  2. 2.Center for Hydrologic SciencesDuke UniversityDurhamU.S.A
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A

Personalised recommendations