Boundary-Layer Meteorology

, Volume 83, Issue 1, pp 75–98 | Cite as




Analytical and numerical models of the neutral and stably-stratifiedatmospheric boundary layer are reviewed. Theoretical arguments andcomputational models suggest that a quasi-steady state is attainable in aboundary layer cooled from below and it is shown how this may be incorporatedwithin a time-steady, one-dimensional model. A new length-scale-limitedk-ε model is proposed for flows where a global maximum mixing length isimposed by the finite boundary-layer depth or, in stably-stratifiedconditions, by the Obukhov length, whilst still reducing to a form consistentwith the logarithmic law in the surface layer. Simulations compare favourablywith data from the Leipzig experiment and from Cardington airfield inEngland.

Atmospheric boundary layer Stable stratification Turbulence modelling k-ε model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apsley, D. D.: 1995, ‘Numerical Modelling of Neutral and Stably-Stratified Flow and Dispersion in Complex Terrain’, Ph.D. Thesis, University of Surrey, England.Google Scholar
  2. Arya, S. P. S.: 1982, ‘Atmospheric Boundary Layers Over Homogeneous Terrain’, in E. Plate (ed.), Engineering Meteorology, Chapter 6, Elsevier Publishing, pp. 233–268.Google Scholar
  3. Blackadar, A. K.: 1962, ‘The Vertical Distribution of Wind and Turbulent Exchange in a Neutral Atmosphere’, J. Geophys. Res. 97, 3095–3102.Google Scholar
  4. Brost, R. A. and Wyngaard, J. C.: 1978, ‘A Model Study of the Stably-Stratified Planetary Boundary Layer’, J. Atmos. Sci. 35, 1427–1440.Google Scholar
  5. Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1990, ‘Direct Simulation of the Turbulent Ekman layer’, J. Fluid Mech. 213, 313–348.Google Scholar
  6. Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1992, ‘Direct Simulation of the Stably Stratified Turbulent Ekman Layer’, J. Fluid Mech. 244, 677–712.Google Scholar
  7. Derbyshire, S. H.: 1990, ‘Nieuwstadt's Stable Boundary Layer Revisited’, Quart. J. Roy. Meteorol. Soc. 116, 127–158.Google Scholar
  8. Detering, H. W. and Etling, D.: 1985, ‘Application of the E-" Turbulence Model to the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 33, 113–133.Google Scholar
  9. Duynkerke, P. G.: 1988, ‘Application of the E-" Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer’, J. Atmos. Sci. 45, 865–880.Google Scholar
  10. Holt, T. and Raman, S.: 1988, ‘A Review and Comparative Evaluation of Multilevel Boundary-Layer Parameterisations for First-Order and Turbulent Kinetic Energy Closure Schemes’, Rev. Geophys. 26, 761–780.Google Scholar
  11. Holtslag, A. A. M. and Nieuwstadt, F. T. M.: 1986, ‘Scaling the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 36, 201–209.Google Scholar
  12. Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1985, ‘Some Observations of Turbulence Structure in Stable Layers’, Quart. J. Roy. Meteorol. Soc. 111, 793–815.Google Scholar
  13. Launder, B. E. and Spalding, D. B.: 1974, ‘The Numerical Computation of Turbulent Flows’, Comp. Meth. Appl. Mech. Engineer. 3, 269–289.Google Scholar
  14. Mason, P. J.: 1989, ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’, J. Atmos. Sci. 46, 1492–1516.Google Scholar
  15. Mason, P. J. and Derbyshire, S.H.: 1990, ‘Large-Eddy Simulation of the Stably-Stratified Atmospheric Boundary Layer’, Boundary-layer Meteorol. 53, 117–162.Google Scholar
  16. Mason, P. J. and Thomson, D. J.: 1987, ‘Large-Eddy Simulation of the Neutral-Static-Stability Planetary Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 113, 413–443.Google Scholar
  17. Mellor, G. L. and Yamada, T.: 1974, ‘A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers’, J. Atmos. Sci. 31, 1791–1806.Google Scholar
  18. Mellor, G. L. and Yamada, T.: 1982, ‘Development of a Turbulence Closure Model for Geophysical Fluid Problems’, Rev. Geophys. Space Phys. 20, 851–875.Google Scholar
  19. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable Nocturnal Boundary Layer’, J. Atmos. Sci. 41, 2202–2216.Google Scholar
  20. Nieuwstadt, F. T. M.: 1985, ‘AModel for the Stationary, StableBoundary Layer’, in J.C.R. Hunt (ed.), Proc. of IMA Conference on Turbulence and Diffusion in the Stable Environment, Cambridge, 1983, Clarendon Press, pp. 149–179.Google Scholar
  21. Rodi, W.: 1987, ‘Examples of Calculation Methods for Flow and Mixing in Stratified Fluids’, J. Geophys. Res. 92, 5305–5328.Google Scholar
  22. Wyngaard, J. C.: 1975, ‘Modelling the Planetary Boundary Layer-Extension to the Stable Case’, Boundary-Layer Meteorol. 9, 441–460.Google Scholar
  23. Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer-A Higher-Order-Closure Model Study’, Boundary-Layer Meteorol. 7, 289–308.Google Scholar
  24. Wyngaard, J. C., Cote, O. R., and Rao, K. S.: 1974, ‘Modelling the Atmospheric Boundary Layer’, in Advances in Geophysics, Vol. 18A, Academic Press, pp. 193–211.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 2
  1. 1.Dept. of Mechanical EngineeringUMISTManchesterEngland
  2. 2.University of SurreyGuildfordEngland

Personalised recommendations